Spedizione in Abb. Postale - Gruppo III/70

Sperimentare

L.700 **APRILE 76** RIVISTA MENSILE DI ELETTRONICA PRATICA in questo numero

WEGA hi-fi

RICHIEDETE I PRODOTTI WEGA

Cataloghi a:

AI RIVENDITORI

PIU' QUALIFICATI

FURMAN S.p.A.

Via Ferri, 6 - 20092

CINISELLO B. (MI)

Diffusori lb 352

Sezione giradischi

Tipo «Dual» 1228 automatico

Dimensioni: 670 x 160 x 365

Caratteristiche generali

Testina magnetica Shure M 91 MG/D

Alimentazione: 220 Vc.a. - 50/60 Hz

A tre vie, tre altoparlanti

Frequenza di taglio crossover:

Dimensioni: 235 x 400 x 170

Campo di frequenza: 35 ÷ 25.000 Hz

850 Hz, - 5.000 Hz

Potenza continua: 50 W

Impedenza: $4 \div 8 \Omega$

paola tedesco o no?

Pilade era il tipico-figlio-unico-di-madre-vedova; timido, con tanto collegio alle spalle, alto e stempiato, serio ed un tantino squallido.

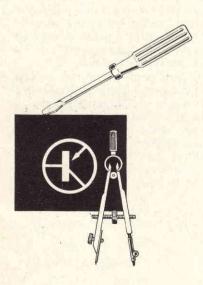
Si era realizzato, se così si può dire, con il lavoro. Era infatti un riparatore TV eccezionalmente bravo. Tanto da svolgere le funzioni di "outside man," di colui che si reca a casa dei clienti della ditta che hanno il televisore fuori uso con il preciso compito di rimetterlo in efficienza almeno nel 90% dei casi, senza tante misure e controlli e strumenti, ma, come si dice, "a fiuto." Riusciva bene, e catturato da una ragazza sveglia che avesse fatto finta di farsi catturare, sarebbe potuto essere un anonimo padre di famiglia come tanti. Invece, sentimentalmente soffriva di un travaglio intenso che non gli consentiva il normale evolversi.

Percepiva uno stipendio abbastanza buono in cambio delle ottime prestazioni offerte, e sebbene fosse schivo e chiuso per natura ogni tanto si concedeva una distrazione. Una sera che aveva voluto distrarsi, si era accodato alle poche persone che si recavano ad assistere a "Jacopone da Todi," quel musical che certuni indicano come il mausoleo di Gianni Morandi cantante, ed in quella occasione aveva visto da vicino (ma da vicino, eh) Paola Tedesco. La futura stravalletta di un megashow TV.

La Paola, con quel suo corpo da statua greca, con quel sorriso a cuore, quel leziosi capelli ricciuti, gli aveva rivolto un solo sguardo, indugiando curiosamente sulla sua strana figura, e Pilade aveva subito l'effetto di essere urtato ed arrotato dall'autobus a due piani che va dalla stazione Termini a San Pietro.

L'occhiata l'aveva bruciato. Da quella sera, alla abituale timidezza aveva sommato un certo rintontimento. Viveva in una dolce monomania che lo portava a scrivere P-A-O-L-A sulla polvere dei vecchi televisori in attesa di riparazione; si era procurato un poster della divina e l'aveva incollato sul soffitto della sua camera: tutte le sere prima di prender sonno lo fissava a lungo. Gli rivolgeva delle preghiere.

Era entrato in contatto con i diversi rigattieri che operano nel mercato teatral-discografico e si era procurato le poche e non del tutto felici incisioni della Paola, senza badare a spese. Le ascoltava a mani giunte, con uno sguardo dall'intensità tale, che l'espressione di Humprey Bogart nell'ultima scena di Casablanca, a confronto, era vuota e piatta.


I colleghi, al corrente del romantico caso, un po' lo compativano ed un po' lo irridevano; per il laboratorio circolavano frasi come: "Eh, i tedesco, sono i migliori; non li frega nessuno!" Oppure: "Buona, questa valvola; è tedesco ... guarda che curve ha!" E via di seguito.

Pilade o non capiva o non raccoglieva. Una sola volta era sceso dalle nuvolette azzurre per strillare istericamente, quando un cattivo aveva dipinto i baffi sulla fotografia della Tedesco religiosamente ritagliata dal "Monello" ed appiccicata accanto al pannello porta attrezzi. Sembra che all'inizio Pilade volesse anche illuminarla con piccole lampade votive; dopo l'episodio, aveva rinunciato.

Comunque, la trasmissione "Un colpo di fortuna" per lui fu un colpo tra capo e collo; quello che si usa definire "del coniglio."

La presenza della Valletta, accanto a Pippo Baudo, lo precipitò in una sorta di turbine di sentimenti; se prima commetteva qualche stranezza saltuaria, divenne seriamente strano.

Sin dalla prima puntata si era procurato *tre* televisori, per paura che quello di casa si rompesse, e disponeva di una completa apparecchiatura sussidiaria della rete, tipo camera operatoria, che poteva entrare direttamente in servizio se la "220" fosse venuta a mancare nel quartiere. Non contento, nelle ore libere aveva modificato un apparecchio montando uno strano tubo Philips che consentiva di proiettare lo spettacolo sul muro, cosicché poteva avere la Paola a grandezza naturale. Non senza spaventare la madre-vedova, ogni tanto piombava come in catalessi, la domenica; gli era successo la prima volta vedendo la Tedesco in gonna a spacchi; adorandola aveva sporto le mani ed era avanzato traballando sino a battere una tremenda craniata sull'intonaco.

Risvegliandosi, aveva sospirato solamente: "Pacla? Pacla!?" Pareva meravigliato di non vederla lì in giro, infatti per tutta la durata dello svenimento l'aveva abbracciata in un romantico valtzer immaginario.

Terminato che fu il programma della lotteria, in negozio non potevano non guardarlo con sospetto; Pilade aveva assunta un'aria amara, distante, mistica.

Comunque, continuava a recarsi diligentemente presso i clienti in difficoltà. Solo un giorno ebbe uno sbandamento; scorto il nome "Tedesco" sulla lista degli interventi, seguito dall'indirizzo di un quartiere elegante, ebbe come un momento di deliquio, poi intascò voracemente l'elenco. "Tedesco" era il quinto cliente, in ordine di successione, ed essendo assolutamente vietato alterarla, Pilade iniziò il giro dal lontanissimo signor Antolini, che al Quarto Miglio aveva un diabolico Philco in panne che nascondeva un condensatore aperto nella media frequenza; la riparazione purtroppo assorbì l'intero pomeriggio e rimasero tre interventi da fare, prima del fatidico cognome. Pilade mostrò indifferenza, ma un collega notò la sua 127 che esplorava nottetempo la zona segnalata sull'elenco.

Dei tre interventi rimasti, il primo richiedeva una sorta di viaggio al sobborgo Palidoro, e proprio mentre il nostro amico vi si recava, in laboratorio giunse una telefonata di sollecito; una calda voce microgenica chiese spiegazioni: si erano forse dimenticati di mandare qualcuno in casa Tedesco? Il ragazzotto praticante che rispondeva fornì tutte le possibili assicurazioni, poi, messa giù la cornetta affermò a beneficio degli astanti: "Aoh, possino cecamme si questa nun è la tizzia de plaibboi; ahammazz ... fortunato chi ce va, a fà sto lavoro!"

Ma Pilade fu sfortunato; il Phonola di Palidoro aveva un complicatissimo difetto nell'oscillatore orizzontale che lavorava a frequenza doppia, ed il Capo, interpellato per telefono gli impose di ripararlo sul posto. Perse quasi tutto il giorno.

Il successivo intervento, come se si fosse messa in moto una conglura silenziosa, era da farsi dalle parti della Selenia, anzi, più in là; nella zona delle cave di travertino.

Il febbricitante Pilade, maledicendo le megalopoli, i vigili, il traffico, perse ore solo per trovare l'indirizzo, ed una volta arrivato si trovò di fronte ad una folle intermittenza difficilissima da localizzare.

Mentre l'affannato riparatore combatteva il saltellio dell'immagine con la determinazione di un marines ad lwo Jima, una splendida ragazza bruna con méche, dallo sguardo felino e dall'andatura da Roll Royce si presentò alla porta del laboratorio reclamando per il mancato intervento in casa Tedesco.

Riempiva magnificamente una costosa pelliccia e spandeva attorno un delizioso profumo francese. Assomigliava alla favolosa Paola come una gemella, senonché aveva le chiome ricciute tirate all'indietro, ed era assolutamente priva di trucco, quindi i tecnici, pur occhiuti come condors, dopo aver profferite scuse ed assicurazioni, rimasero a discutere a lungo se si trattasse o no di "quella" Paola o di un'altra. Si sa, fuori dallo schermo, i personaggi hanno un aspetto diverso.

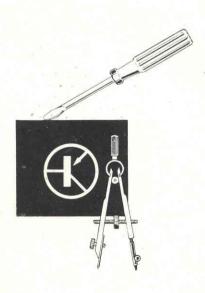
A sera, rientrò lo stravolto Pilade che aveva risolto tutti i guasti che lo separavano dalla riparazione agognata, e gli riferirono della visita. Gli occhi gli si fecero fluorescenti, mentre un rossore marcato gli accendeva la fronte ed il naso; poi impallidì improvvisamente e dovette sedersi.

Il giorno dopo era il "gran" giorno.

Pilade era lustro come cento lire nuove; aveva indossato un abito grigio, accostandolo curiosamente con una camicia color malva ed una cravatta verdina che doveva essere di buona marca; profumava come tutti gli stabilimenti di Elizabeth Arden; specchiandosi nelle sue scarpe sarebbe stato possibile radersi la barba senza lasciare un pelo. Si era fatto fare il manicure ed una minuziosa messa in piega dei capelli con il cotone; una cosa mai vista.

Solo, non sembrava aver dormito, a giudicare dalle occhiaie, ma tutti compresero. Nel laboratorio, incoraggiamenti goliardici, mottetti, tiratine e frasacce si sprecarono. Pilade, camminando come se levitasse "fece la borsa" e senza raccogliere scivolò nel sole verso la 127 che aveva fatto lavare e lucidare, guarnire con un cane di pezza, ravvivare nelle cromature: pareva appena uscita dalla Fiat.

Pilade diede un paio di accelerate rabbicse e parti come proiettato da una catapulta. Correva come il baleno, come il soldato di Maratona, come un cavaliere di Balaclava, come Pegaso, sorridendo in preda ad una beatitudine che provava per la prima volta in vita sua. Era tanto beato che non si avvide del camion della nettezza urbana fermo dopo l'angolo: vi si incastrò sotto con un tonfo da far tremare il Colosseo. Dall'altra parte della città, una squadra di imbianchini lasciò il lavoro credendo di aver udito sparare il cannone del Gianicolo.


Accorsero anche i colleghi inorriditi. Rimase in laboratorio solo il ragazzotto, che ricevette una telefonata di disdetta da parte di casa Tedesco, ove si era stanchi di attendere il riparatore.

Pilade ne ebbe per una sessantina di giorni.

Quando uscì dall'ospedale fu informato dell'annullamento della chiamata, ed allora fece domanda per emigrare in Australia.

Pare che allevi canguri, attualmente.

gianni brazioli

erimentare

Rivista mensile di elettronica pratica

Editore: J.C.E.

Direttore responsabile: RUBEN CASTELFRANCHI

Redattore capo: GIAMPIETRO ZANGA Redattori: GIANNI DE TOMASI ANGELO CATTANEO

Direzione, Redazione, Pubblicità: Via Pelizza da Volpedo, 1 20092 Cinisello Balsamo - Milano

Tel. 92.72.671 - 92.72.641

Amministrazione:

Via Vincenzo Monti, 15 - 20123 Milano

Autorizzazione alla pubblicazione:

Tribunale di Monza

numero 258 del 28-11-1974

Stampa: Tipo-Lito Fratelli Pozzoni

24034 Cisano Bergamasco - Bergamo

Concessionario esclusivo

per la diffusione in Italia e all'Estero:

SODIP - Via Zuretti, 25 - 20125 Milano

SODIP - Via Serpieri, 11/5 - 00197 Roma

Spedizione in abbonamento postale gruppo III/70

Prezzo della rivista L. 700 Numero arretrato L. 1.400 Abbonamento annuo L. 7.000

per l'Estero L. 10.000

I versamenti vanno indirizzati a:

Via Vincenzo Monti, 15 - 20123 Milano mediante l'emissione di assegno circolare, cartolina vaglia o utilizzando

il c/c postale numero 3/56420

Per i cambi d'indirizzo; allegare alla comunicazione l'importo di L. 500, anche in francobolli, e indicare insieme al nuovo anche il vecchio indirizzo.

C Tutti i diritti di riproduzione o traduzione degli articoli pubblicati sono riservati.

SOMMARIO

Questo mese		pag	303
Un regolatore per motorini	•	>>	309
trasmettitore CB		×	311
Distorsore per chitarra		>>	317
Portatori di Pacemakers state Iontano dai trasmettitori		»	321
Modulo amplificatore pluriuso		>>	324
Clessidra elettronica	٠	»	330
L'ampeggiatore elettronico di emergenza.		»	334
Il rinfrescatore		>>	339
V.F.O. e preamplificatori R.F. per la Citizen Band		>>	341
Appunti di elettronica	٠	33	-347
Una scatola piena di vento		>>	355
"Il soddisfatutti" alimentatore 12 V - 1,5 A		»	361
Sirena prova gates		>>	366
La scrivania		»	371
Quiz a premi: linotipia elettronica		»	372
Il salva - saldatore		>>	375
Televisore da 20" UT/6520		>>	378
In riferimento alla pregiata sua		»	385
Prezzi di ricetrasmettitori CB usati		»	391

Una buona occasione per divertirsi risparmiando

"SCIENTIFIC" calcolatrice kit Sinclair

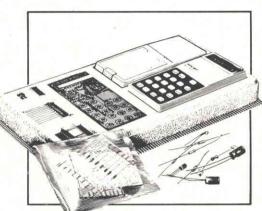
Un'originale calcolatrice scientifica in scatola di montaggio Esegue calcoli logaritmici, trigonometrici e notazioni scientifiche con oltre 200 gamme di decadi che si trovano solo in calcolatori di costo decisamente superiore.

Questa calcolatrice vi farà dimenticare il regolo calcolatore e le tavole logaritmiche.

Con le funzioni disponibili sulla tastiera della Scientific, si possono eseguire i seguenti calcoli:

seno, arcoseno, coseno, arcocoseno, tangente, arcotangente, radici quadrate, potenze, logaritmi ed antilogaritmi in base 10

oltre, naturalmente, alle quattro operazioni fondamentali.


L'attrezzatura necessaria per il montaggio, si riduce ad un paio di forbici, stagno e naturalmente un saldatore, si consiglia il saldatore ERSA Multitip adatto per piccole saldature di precisione che ha il n° di cod. G.B.C.

LU/3640-00

Componenti del kit:

- 1) bobina
- 2) integrato L Si
- 3) integrati d'interfaccia
- 4) custodia in materiale antiurto
- 5) pannello tastiera, tasti, lamine di contattto, display montato
- 6) circuito stampato
- bustina contenente altri componenti elettronici (diodi, resistenze, condensatori, ecc.) e i clips fermabatterie.
- 8) custodia in panno
- 9) libretto d'istruzioni per il montaggio
- 10) manuale d'istruzioni per il

Il montaggio di questa calcolatrice richiede un massimo di 3 ore.

Scatola di montaggio Sinclair "Scientific"

• 12 funzioni sulla semplice tastiera Logaritmi in base 10, funzioni

trigonometriche e loro inversi; tutti i calcoli vengono eseguiti con operazioni di estrema semplicità, come fosse un normale calcolo aritmetico.

Notazione scientifica

Il display visualizza la mantissa con 5 digitali e l'esponente con 2 digitali, con segno positivo o negativo

• 200 gamme di decadi, che vanno da 10 - 99 ÷ 10 99

• Logica polacca inversa

possono essere eseguiti calcoli a catena senza dover premere in continuazione il tasto =

La durata delle batterie è di 25 ore circa

4 pile al manganese forniscono un'autonomia necessaria

• Veramente tascabile

Dimensioni di mm 17x50x110, peso 110 g.

Le scatole di montaggio delle calcolatrici scientifiche

sono in vendita presso le sedi G.B.C. codice SM/7000-00

ALTOPARLANTE da portiera

completo di mascherina protettiva Potenza di uscita: 8W Impedenza: 4 ohm Dimensioni: 147 x 147 x 57 KA / 1056-00

L. 3.900

ACCESSORI per AUTORADIO

in vendita presso le sedi G.B.C.

Altoparlante L. 5.200 da portiera

completo di mascherina protettiva. Potenza di uscita: 11W Impedenza: 4 ohm Dimensioni: 147 x 147 x 57 KA/1058-00

Altoparlante da portiera

KA/1050-00

completo di mascherina protettiva Potenza di uscita: 5W Impedenza: 4 ohm Dimensioni: 142 x 142 x 60

L. 3.500

Altoparlante da portiera

completo di mascherina protettiva Potenza di uscita: 15W Impedenza: 4 ohm Dimensioni: 142 x 142 x 60 KA/1052-00 L. 3.900

SUPPORTO ESTRAIBILE per FIAT 131

adatto a qualsiasi tipo di autoradio o mangianastri KC/2630-30 . 8.700

Supporto estraibile per Fiat 132 adatto a qualsiasi tipo di

autoradio o mangianastri. KC/2630-50

L. 9.700

Car-Box compact L. 7.200 custodia estraibile

per ogni tipo di autoradio o mangianastri KC/2630-20

Supporto estraibile con fissaggio a staffe per qualsiasi tipo di autoradio o mangianastri KC/2645-00

L. 6.800

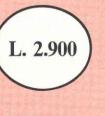
custodia in materiale plastico antiurto Potenza nominale: 4W Impedenza: 4 ohm

Dimensioni: 195 x 87 x 60 KA / 1700-00

Altoparlante elittico con

Supporto estraibile per mangianastri KC/2630-60

L. 3.900



Antenna per autoradio

Fissaggio su carrozzeria Elemento ricevente: tubi telescopici Lunghezza cavo: 1.100 Lunghezza antenna: 1.030 Inclinazione variabile KT / 1821-00

Antenna per autoradio

Fissaggio su tetto Elemento ricevente: stilo in acciaio Lunghezza cavo: 1.450 Lunghezza antenna: 825 Inclinazione variabile KT / 1100-00

. 1.500

Antenna per autoradio

Fissaggio a grondaia Elemento ricevente: stilo in acciaio Lunghezza cavo: 1.430 Lunghezza antenna: 785 Inclinazione variabile KT / 1000-00

Supporto estraibile per qualsiasi tipo di autoradio o L. 3.900 mangianastri KC/2630-00

L. 3.900

Altoparlante con custodia in A.B.S. nero

Potenza di uscita: 5W Impedenza: 4 ohm Dimensioni: 178 x 158 x 108 KA / 1560-00

GENERATORE DI BARRE A COLORI

Fornisce segnali TV in bianco e nero ed a colori con prestabilite figure geometriche particolarmente studiate per la messa a punto di un televisore senza dover ricorrere ad altri strumenti.

FIGURE GEOMETRICHE: Scacchiera - Bianco - Rosso -Scala dei grigi - Punti - Reticolo con cerchio - 8 barre colorate normalizzate - 3 tasti di prova per la messa a punto del decodificatore PAL.

CAMPO DI FREQUENZA: 48÷82; 175÷250; 470÷660

MHz in tre bande a regolazione continua.

PORTANTE AUDIO: 5,5 MHz dalla portante video, modulato in frequenza.

STANDARD TV: PAL B e G (a richiesta standard I).

USCITE AUSILIARIE: Video - sincronismi riga e quadro -4, 43 MHz.

TENSIONE DI USCITA: > di 10 mV su 75 Ω regolabile con continuità.

STRUMENTI DI MISURA E DI CONTROLLO ELETTRONICI ELETTRONICA PROFESSIONALE

UFFICI COMM. E AMMINISTR.: 20122 MILANO Via Beatrice d'Este, 30 - Tel. 54.63.686 - 59.27.84 STABILIMENTO: 20068 PESCHIERA BORROMEO Via Di Vittorio, 45

IN REGOLATORE PER MOTORINI a cura di Teddy

ra una bella giornata primaverile; Gianni appena alzato aveva visto quel sole così caldo... e pensato: Altroché professori, sciopero e matematica, oggi voglio andare in giro con la moto, con questo caldo sarà uno spasso.

Subito pronto e motorizzato andò a prelevare la "sua" Angela che lo attendeva per andare, invece, proprio a scuola.

- Bé, ché vieni?? - Disse lui - Guarda che bel sole, ce ne andiamo un po' in giro a scaldarci... - Ma dai!! - Rispose lei - Non fare lo sciocco, siamo alla fine dell'anno, se non vieni a scuola non fai il compito di matematica e rischi la bocciatura.

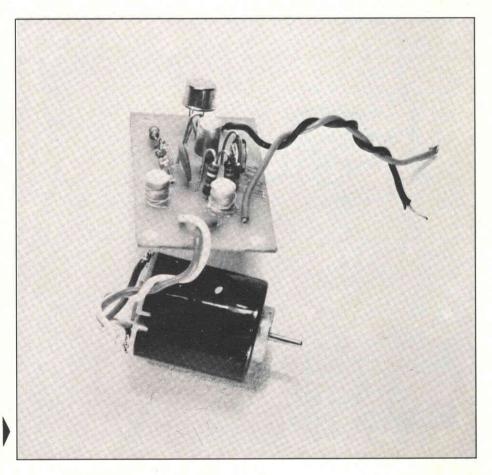
Ma quello: — Ma va... Non esagerare... e poi sono fatti miei; piuttosto guarda, ho con me il mangianastri con l'ultimo L.P. di quelli della West Coast, vieni che ce lo sentiamo.—

Ed a questa allettante (!) sirena, la ragazza accettò e senza discutere si installò sul bolide del giovane.

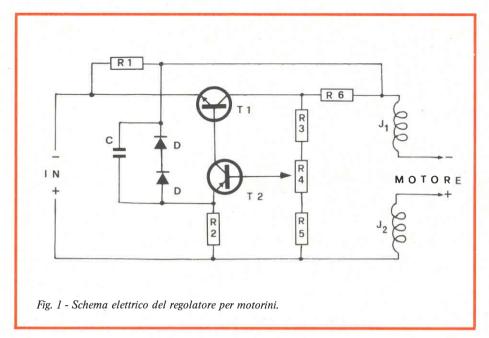
Tutto bene per un po', ma ecco che il sole si oscura, le nubi incombono e i due iniziano ad... inumidirsi sotto grossi goccioloni primaverili.

Bene! - fa lui appena giunti al coperto – Ora ci sentiamo in pace la nuova cassetta almeno... –

Mal gliene incolse, perché appena messo in funzione il mangianastri incominciò a lamentarsi; sì proprio un lamento era quel suono emesso dal marchingegno. Figuratevi il gusto di Gianni che vide così rovinata del tutto la sua giornata, rubata inutilmente allo studio.


Questo fatto però non è detto debba succedere a tutti; passi per il tempo, non ancora sufficientemente Bernacchizzato (catechizzato da Mr. Bernacca), ma quella del mangianastri è proprio una cosa evitabile; vediamo come.

Sono piuttosto diffusi mangianastri che usano per motorino di trascinamento un tipo che porta solidale all'albero motore degli eccentrici regolatori di velocità.


Il grosso difetto di detti motori è la sensibilità agli urti, scossoni, che possono deformare gli attacchi mobili degli eccentrici, falsando la corretta funzione di regolazione.

È ovvio che se allora si ricorre ad un regolatore esterno, di tipo elettronico, che unisce le solite doti di robustezza e sicurezza dei semiconduttori alla semplicità circuitale, si è risolto ogni problema.

Il circuito di fig. 1 realizzato con soli due transistori, si comporta così: il transistore T1, in parallelo a R1' alimenta il motore, che in base al carico applicato al suo albero assorbe maggiore o minore corrente. Ma detto assorbimento passando in

Prototipo del regolatore per motorini a realizzazione ultimata.

R1, R6, R3, R4, R5 del partitore varia la tensione presente ai capi di ogni resistore. Poiché T1 è pilotato da T2 che rivela le variazioni di tensione sul partitore, si è realizzato un circuito di reazione, il quale provvede a riprestinare le precedenti condizioni di tensione: in definitiva si provvede se la tensione è più bassa di un certo valore a spingere T1 maggiormente in conduzione, o in caso contrario ad aumentare la resistenza interna.

Per semplificare al massimo il circuito si usano due semiconduttori di opposta polarità, uno PNP, l'altro NPN e due diodi al silicio.

Lo scopo di questi ultimi è di polarizzare correttamente l'emettitore di T2 per quella reazione di cui sopra detto, ed anche di permettere l'avvio del motore, fase questa piuttosto critica in cui l'assorbimento del carico è molto più alto di quello di regime.

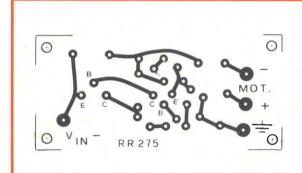


Fig. 2 - Basetta a circuito stampato vista dalla parte ramata in grandezza naturale.

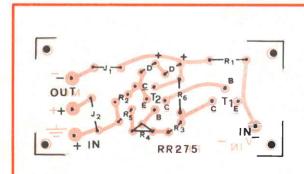


Fig. 3 - Disposizione dei componenti sulla basetta a circuito stampato.

Il condensatore in parallelo ai diodi, permette la soppressione di eventuali picchi di ampiezza piuttosto elevata, possibili allorché i due diodi fossero sottoposti a bruschi salti di polarizzazione.

Le bobine, comodissime, permettono il filtraggio del ronzio introdotto dalle spazzole del motorino e permettono di diminuire il rumore di fondo dei mangianastri sempre piuttosto elevato.

Inserendo correttamente l'alimentazione ai capi d'ingresso, e collegando una resistenza da $100~\Omega~1~W$, ai capi relativi al motore, con in parallelo un voltmetro si potrà notare come ruotando con un cacciavite il cursore di R4, varia la tensione di uscita che fermo restando il trimmer resterà inalterata anche variando notevolmente la resistenza di carico (10 Ω)

Il circuito è dimensionato per accettare una alimentazione da 6 a 15 V, ed una uscita da 2A 6 V, perciò l'utilizzazione è abbastanza ampia e adatta ai vari tipi di portatili in commercio.

Il montaggio, è ovvio, va realizzato su circuito stampato anche per contenerne le dimensioni, il componente più ingombrante è il dissipatore per T1, ma nella stesura del c.s. si è tenuto conto anche di questo fattore.

Anzi, proprio per le sue piccole dimensioni, il nostro circuito può essere agevolmente installato all'interno dei "portatili".

Se appena ultimato il circuito non dovesse funzionare, o si dovesse guastare in breve tempo, la ragione è da ricercare nell'eccessivo assorbimento del motore o nella qualità non troppo buona del transistore T1' può succedere usando componenti di recupero!!).

Sicuramente fra i lettori di queste righe c'è chi necessita di un simile apparato, ma è impossibilitato a reperire i componenti; a costui si consiglia di sfogliare il catalogo dei kit dell'Amtron: con la sigla UK 690 vi è un ottimo regolatore.

ELENCO DEI COMPONENTI

T1: transistore 2N 1711
T2: transistore AC 128

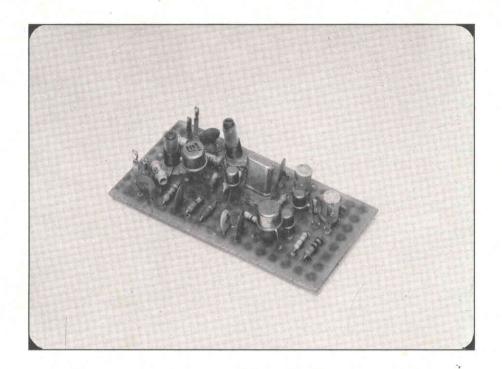
R1 : resistore da 680 Ω - 1/4 W

R2: resistore da 390 Ω - 1/4 W

 $R3\ :\ resistore\ da\ 330\ \Omega\ -1/4\ W$

R4: trimmer da 2,2 kΩ

R5: resistore da 330 Ω - 1/4 W


R6: resistore da 5,6 Ω - 1/2 W

D: 2 x 1N 914

C : condensatore da 220 nF

J1-J2: impedenze GBC OO/0469-00

aletta di raffr. GBC GQ/1460-00

E possibile costruire un discreto trasmettitore CB, impiegando un numero molto limitato di componenti, magari di recupero e comunque di basso costo? Secondo me sì; e il progetto che vi descrivo vuole essere una proposta in tal senso. Ha una potenza d'uscita compresa fra 0,3 e 0,5 W, la modulazione è positiva e molto buona. L'alimentazione è sui 12 V.

TRASMETTITORE

embra un giocattolo. Ed invece non lo è. Certo, da circuiti così semplici sarebbe sciocco aspettarsi prestazioni mirabolanti, ma se avete a disposizione un'antenna in buona posizione potrete sicuramente collegare i CB che "lavorano" nell'ambito della vo-

stra stessa città.

Si tratta, insomma, di un buon "trampolino di lancio" per tuffarsi nel mondo della CB ma, contemporaneamente, può servire egregiamente anche a chi, più esperto, desideri provare il fascino del QRP (= trasmissione con potenze molto limitate).

A mio avviso è molto più affascinante riuscire a fare qualche buon OSO con potenze basse, giocando sulla propagazione e sulla propria abilità di radio-operatore, piuttosto che sfruttando un trasmettitore di grossa potenza, magari munito anche di amplificatore lineare.

Alcuni anni fa, ad esempio, costruii

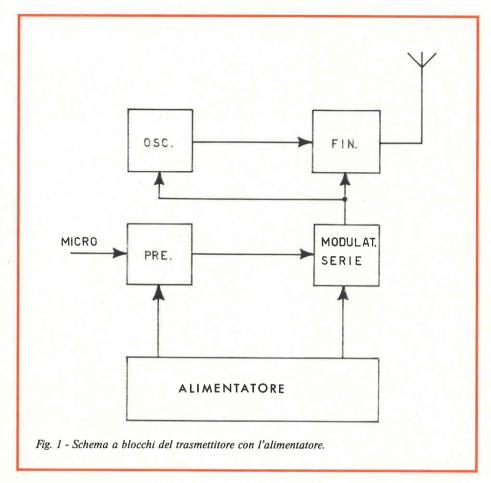
di ECO 1

un trasmettitore con tre soli transistori. Era davvero semplice, forse anche un po' troppo, ma mi diede delle grosse soddisfazioni.

Grande poco più di un pacchetto di sigarette, lavorava in telegrafia sulla gamma dei 10 metri, con circa 4 W di uscita.

L'antenna era un dipolo, fra l'altro in posizione tutt'altro che favorevole.

Ebbene con questo apparecchio riuscii a collegare, in poco meno di un'ora, una decina di radioamatori americani.


Certo la propagazione era molto buona, non è facile trovare spesso delle "aperture" così favorevoli.

A mio avviso anche in gamma CB esiste la possibilità di trarre qualche grossa soddisfazione da un trasmettitore di bassa potenza.

Con questo spirito mi sono messo al lavoro, nell'intento di offrire, a chi lo desidera, la possibilità di costruire un apparecchio assolutamente semplice, non critico, ma di buone prestazioni.

Lo consiglio a chi ancora non dispone di nessun trasmettitore ed anche al CB più attrezzato: si renderanno entrambi conto che anche con potenze di poche centinaia di milliwatt si può non solo fare QSO, ma anche avere dei buoni rapporti di ascolto.

Inoltre questo apparecchietto può fa-

cilmente essere costruito nello spazio di un paio di sere, utilizzando per la quasi totalità materiale di ricupero.

Per chi ancora non disponesse di un ricevitore CB, preciso che ne sto met-

tendo insieme uno, di semplicità paragonabile a quella del progetto che trovate descritto su queste pagine.

Esaurita la premessa, passiamo ad esaminare insieme il circuito.

LO SCHEMA

In figura 1 trovate riportato lo schema a blocchi ed in figura 2 quello elettrico.

A prima vista potrebbero per la verità sembrare poco ortodossi.

Non vi fate ingannare, però, dagli schemi stessi.

Il circuito è, in realtà, molto più semplice e lineare di quello che potrebbe apparire ad una prima superficiale occhiata.

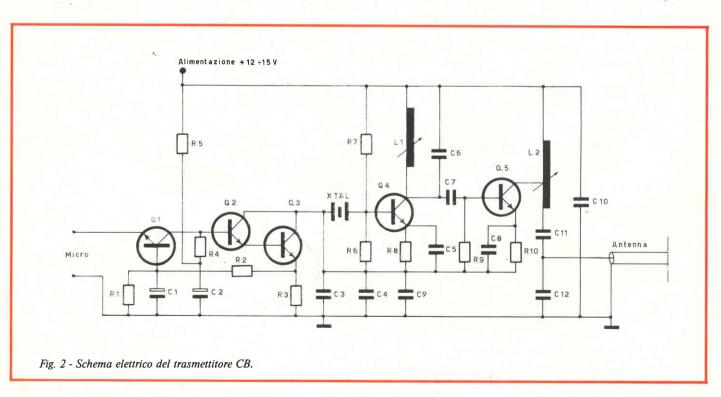
Esaminando lo schema di figura 2, cominciamo con il generatore di portante.

È costituito dall'oscillatore, Q4, e da un amplificatore-finale: Q5.

Preciso che questi due stadi funzionano alla metà della tensione di alimentazione: nel nostro caso dunque lavorano a 6 V.

L'oscillatore è convenzionale; è stato ottimizzato per funzionare anche a tensioni molto basse, dell'ordine di 1,5 V.

Ciò è essenziale ai fini dell'ottenimento di una modulazione soddisfacente.


Il finale, Q5, è un 2N4427, un transistore avente come caratteristica saliente quella di disporre di un guadagno eccezionale.

La sua base è stata accoppiata direttamente sul lato caldo della bobina L1, anche se ciò può per la verità sembrare poco ortodosso.

Questo sistema di accoppiamento è nato seguendo un criterio di ottimizzazione tra la qualità del sistema e la facilità di realizzazione della bobina L1.

È innegabile che si tratta di un compromesso: piuttosto accettabile, comunque.

L'uscita di questo transistore, cioé il

collettore, è collegato ad una presa sulla bobina L2.

Non è possibile eliminare la presa su L2, allo scopo di semplificare la realizzazione, perché ciò condurrebbe inevitabilmente ad un pesante compromesso: molto più pesante di quello relativo alla bobina L1.

L'antenna è accoppiata al circuito finale tramite i due condensatori C11 e C12.

L'impedenza riportata su questo punto è all'incirca sui 60 Ω, uguale cioé a quella di uscita di Q5.

Si tratta del valore di impedenza giusto per accoppiarsi all'antenna tramite un cavo coassiale, il quale ha una im-

ELENCO DEI COMPONENTI

R1 resistore da 5.6 kΩ R2 resistore da 1.8 kΩ R3 resistore da 10 Ω **R4** resistore da 10 kΩ **R5** resistore da 1.8 kΩ **R6** resistore da 2,2 kΩ R7 resistore da 4,7 kΩ **R8** resistore da 47 O R9 resistore da 330 Ω R10 resistore da 2.2 Ω condensatore da 5 µF -C₁ 12 V o più

C2

condensatore da 10 uF -12 V o più

C3 C4 C8

L1

C9 C10 condensatori da 22 kpF

C5 condensatore da 68 pF **C6** condensatore da 10 pF **C7** condensatore da 27 pF

C11 C12 : condensatori da 100 pF

Q1 Q2 transistori BC 107. In alternativa, qualunque NPN al

silicio

Q3 transistore 2N1711 2N1613

04 transistore BSX26, 2N2369,

2N708, 2N914, P397

Q5 transistore 2N4427

XTAL quarzo per trasmissione sul-

12 spire di filo smaltato, diametro 0,3 mm avvolte ser-

> rate su di un supporto da 5 mm di diametro, munito

di nucleo

L2 14 spire dello stesso filo, sul-

lo stesso supporto, con presa realizzata a metà dello

avvolgimento

microfono dinamico da 200 Ω

di resistenza interna

CHEMTRONICS

SILICONE HEAT SINK COMPOUND

Grasso al silicone studiato per favorire lo scambio di calore fra i transistors o altri semiconduttori e dissipatori. In tubetti da 30 g.

LC/0711-00

SPRAY DPL

Come il modello LC/0845-00 ma in confezione da

LC/0847-00

COLOR LUBE Studiato per la pulizia e la lubrificazione dei sintonizzatori nei TV a colore. Non è assolutamente infiammabile, protegge i contatti dall'usura e lascia sulle superfici un velo lubrificante.

In bombola spray da 115 g.

LC/0519-00

SPRAY DPL Previene l'ossidazione di qualsiasi metallo, ma è anche indicatissimo per lubrificare i contatti e le parti non facilmente raggiungibili.

In confezione spray da 115 g.

LC/0845-00

SILICONE LUBRICANT

E' un liquido al silicone dagli usi più disparati: lubrificante, protettivo e detergente.

caratterizzato da una bassa viscosità e basso punto di congelamento.

In bombola spray da 170 g.

LC/0657-00

TAPE HEAD CLEANER

Pulisce perfettamente le testine magnetiche di ogni tipo di registratore e riproduttore, migliora la fedeltà e riduce il rumore di fondo. In bombola spray da 115 g.

LC/0619-00

in vendita presso le sedi G.B.C.

pedenza compresa fra i 52 ed i 75 Ω .

Esaurita la descrizione del generatore di portante, parliamo ora del modulatore.

Questo è costituito dai transistori Q1, Q2, Q3.

Il primo è impiegato come preamplificatore microfonico. Genera in uscita un segnale sufficiente a pilotare i transistori Q2 e Q3, essendo dotato di un eccellente guadagno.

Questi ultimi due si comportano come un solo transistore, dotato però di

eccellenti caratteristiche.

Il resistore R3 serve a stabilizzarne il punto di lavoro, mentre la rete di controreazione e di polarizzazione, costituita da R2, R1, e C1, serve a migliorare il comportamento dell'intero modulatore.

In assenza di modulazione la tensione su Q3 è di circa 6 V, perfettamente li-

Parlando vicino al microfono, invece,

varieremo questo livello fra i 2 ed i

Tali variazioni di tensione sono riportate su Q4 e Q5, che vengono in tal modo modulati in ampiezza.

Si noti che tutti i transistori sono fra

loro accoppiati in continua.

È evidente pertanto che la polarizzazione di O1 è in grado di condizionare tutte le differenze di potenziale su tutti i transistori.

È quindi necessario che la resistenza disposta fra l'emettitore di O1 e massa (ossia quella del microfono impiegato) sia il più possibile prossima a quella del microfono da me impiegato.

Diversamente si otterrebbe una mo-

dulazione di cattiva qualità.

Non cercate di impiegare microfoni piezoelettrici o ceramici: qui ci vuole un dinamico, e con resistenza interna di circa 200 Ω.

IL CABLAGGIO

Come al solito, vi riporto la basetta in scala 1:1 del circuito stampato che vi consiglio (fig. 3).

In figura 4 trovate anche la disposizione dei componenti.

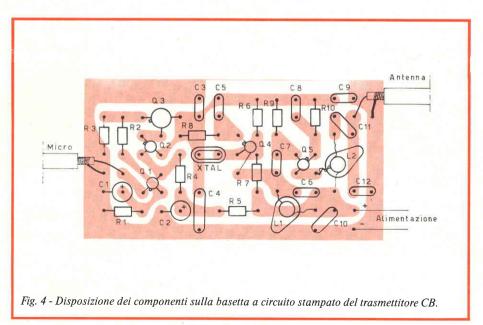
I componenti impiegati non sono critici: Q1 e Q2 possono essere sostituiti da qualunque NPN al silicio, anche di recupero (l'impiego ideale per quei vecchi transistori sconosciuti, recuperati dalla radiolina a transistori del nonno...).

Q3 è bene invece che sia un transistore un po' più grosso, un TO5 insomma.

Naturalmente deve essere un NPN al silicio.

O4 e O5, a loro volta, devono essere quelli da me consigliati.

Il quarzo è uno comune da trasmissione in terza armonica.


LA TARATURA

È piuttosto semplice: inserito il microfono nell'apposita presa, basta regolare i nuclei delle bobine L1 ed L2 per la massima uscita, rilevabile tramite un misuratore di onde stazionarie od anche. più semplicemente, con una lampadina momentaneamente collegata al posto dell'antenna. Parlando vicino al microfono si dovrà avere un aumento della potenza emessa; in ogni caso, si regoleranno entrambi i nuclei in quella posizione cui corrisponde il massimo della potenza trasmessa in presenza di modulazione.

La lampadina con cui effettuare la taratura, per chi non dispone di un misuatore di onde stazionarie, è consiglia-

bile che sia da circa 0,3 W.

A questo punto siete pronti per andare in trasmissione, con i miei migliori auguri di buoni QSO.

buone idee per risolvere problemi

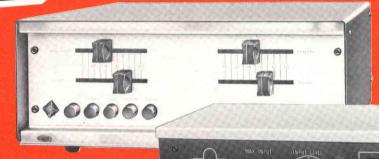
AMPLIFICATORE 5 W A C.I. CON CONTROLLO DI TONO **E VOLUME**

Amplificatore di estrema semplicità costruttiva e di minimo ingombro, ottimo rendimento acustico e grande stabilità, grazie all'Impiego di un circuito integrato al silicio. Alimentazione: 12 ÷ 14 Vc.c. Sensibilità d'ingresso: 80 mV. Potenza d'uscita: 5 W.

Risposta di freguenza: 40 - 20.000 Hz. Impedenza d'ingresso: 100 kΩ. Impedenza d'uscita: 4 Ω.

UK 271

AMPLIFICATORE STEREO HI-FI - 12 + 12 W RMS


E' un amplificatore di costruzione estremamente robusta.

L'apparecchio è particolarmente adatto a funzionare in unione all'UK 743. Alimentazione: 115-220-250 V - 50-60 Hz. Tensione continua: 28 Vc.c.

Impedenza e sensibilità piezo: 500 k Ω - 100 mV.

Impedenza e sensibilità ingresso ausiliario: 6,8 k Ω - 110 mV.

Impedenza e sensibilità ingresso registratore: $10 \text{ k}\Omega$ - 170 mV.

UK 189

GENERATORE DI LUCI PSICHEDELICHE 3 x 1500 W

Permette l'azionamento di tre distinti gruppi di lampade, una per la banda dei toni bassi, una per quella dei toni medi ed una per quella dei toni alti.

Particolarmente adatto a funzionare in unione all'UK 189.
Alimentazione: 115-220-250 Vc.a. 50-60 Hz.
Potenza max delle lampade: 1500 W per canale.
Potenza dell'amplificatore da collegare all'ingresso: fino a 15 W; oppure fino a 50 W.

IN VENDITA PRESSO TUTTE LE SEDI

PSYCHEDELIC LIGHT 1500W-CH

UK 743

REGOLATORE DI LUCE DA 1000 W

E' un regolatore a stato solido atto a svariati impieghi

grazie all'elevata potenza che può regolare. Il montaggio è facile e rapido, adatto a tutti gli usi e specialmente in studi fotografici.

Inseribile su reti elettriche a: 125 ÷ 250 Vc.a. 50-60 Hz. Potenze massime del carico:

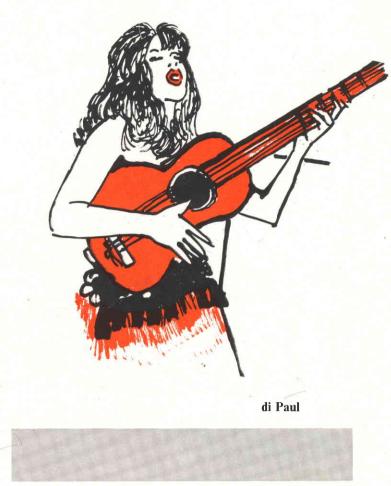
a 125 Vc.a. 790 W

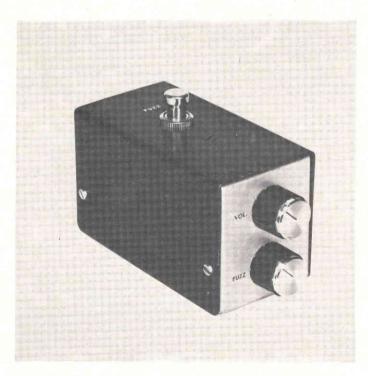
a 220 Vc.a. 1320 W

a 250 Vc.a. 1500 W

a EMPOLI via G. Masini, 32 é nato un nuovo punto di vendita

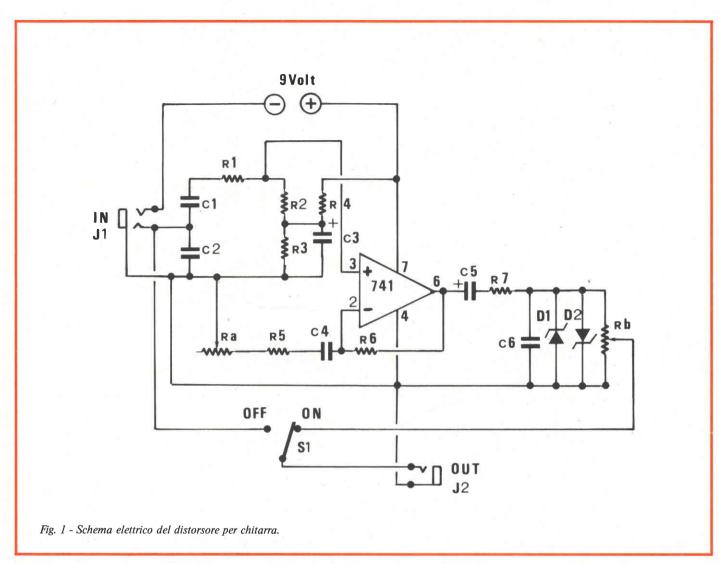
G.B.C.


VISITATELO



desso, forse di Jimi Hendrix e della sua musica non è rimasto che un ricordo ormai diluito nel tempo; il passato è quello che è stato: tutto ciò che ora vive in noi del '68 è solo mito e leggenda. Ma quello che ci faceva scoprire il gusto di una rabbiosa interpretazione erano le contemporanee manifestazioni contestatarie, era la voglia di esprimere quello che volevano e solo quello. Ed allora si compravano i dischi dei Led Zeppelin, si cercava sino all'ossessione di imitare Page e Alvin Lee, e si dimenticava così, maltrattando le corde di una chitarra forse barattata per poche migliaia di lire in cambio della "pax familiae". l'obbligo quotidiano di una società sempre uguale. Poi si scoprivano le novità; si rincorreva il mito di una musica sempre meno rafforzata e si decideva di piantare tutto improvvisamente e di mettersi a suonare "sul serio" spesso, però, perdendo in spontaneità ciò che si acquistava in bravura. Adesso giriamo con il nostro bravo astuccio rigido che da solo costa il quadruplo della nostra prima chitarra, ormai persa e dimenticata nel tempo, e quando lo apriamo, si intravedono le rifiniture dorate di una Gibson o la fredda bellezza d'acciaio della Fender. Ci siamo adattati: la rabbia è stata sostituita dal mestiere. Poi andiamo a sentire Area o Sensationis Fix e ritroviamo una nuova regia del suono: ascoltiamo bene e vediamo che c'è la stessa rabbia all'origine, manipolata attraverso un sound meravigliosamente arcano e allo stesso tempo mordente che si chiama, guarda caso, ARP, EMS (VCS 3), Electro Harmonix e ci accorgiamo che, dopo tutto, possiamo "caricarci" anche senza bruciare le bobine degli altoparlanti, facendo fondere gli AC 126 degli antenati distorsori e senza farci maledire dall'intero vicinato.

DISTORSORE PER CHITARRA



Prototipo del dispositivo per chitarra a realizzazione ultimata.

LA PROGETTAZIONE

Dopo tutto, non ha più senso avere una buona chitarra per adoperare poi dei "manipolatori" (o Boxer come dicono gli americani) scadenti che aggiungono sì un nuovo timbro, ma anche un indefinibile sorta di rumoracci di fondo.

Direte voi: è impossibile progettare un distorsore che acceso, senza segnale in ingresso, dia all'amplificatore rumore di fondo nullo. Certamente, diciamo noi, ma è possibile progettarne uno che invece sia assolutamente privo di scratch e ronzii spuri in aggiunta alla nota suonata. È ovvio che è questo ciò che si richiede ad un distorsore professionale; il rumore di fondo sarà peraltro inudibile durante l'uso essendo il rapporto segnale/disturbo di circa - 70 dB. Per ottenere i risultati propostici, abbiamo subito scartato l'uso dei transistori: prima di tutto sono ingombranti (a meno che non si richieda un particolare effetto FUZZING "sporco" - dirty sound - come il BIG MUFF della E.H. di New York; era il distorsore di Jimi Hendrix), e poi hanno caratteristiche non sempre uguali. Ecco quindi l'opzione per l'integrato L 741 (o CA 741 o MC 1741) che, oltre ad essere autocompensato è di caratteristiche costanti di produzione; consuma poco ed è adattissimo per manipolazioni in BF. Il tutto poi doveva, sempre nelle vostre prospettive, servire come FUZZER a guadagno costante: il tono deve cambiare senza che vi sia influenza enorme fra percentuale di distorsione e guadagno. L'alimentazione doveva essere col negativo a massa e si doveva cercare di contenere le dimensioni del tutto.

A tale scopo si potrebbe (potete provare) riprogettare il disegno del circuito stampato e fare tutti i componenti su una basetta la cui superficie sia minore di 9 centimetri quadri. Ciò è possibile usando condensatori ceramici a bassa tensione e condensatori elettrolitici al tantalio e resistenze da 1/8 di W. Il 741 si consiglia di reperirlo in formato Dual - in - Line.

CABLAGGIO

Passando ad una analisi più accurata, si può osservare, come l'uso dell'operazionale renda il circuito elettrico di semplicissima fattura: il segnale, applicato al distorsore tramite JI, viene filtrato dalla rete C1, C2, C3, R1, R2, R3 e poi applicato all'entrata invertente dell'operazionale. La controreazione è regolata da R6 che, per il suo valore piuttosto elevato (1 Mega Ohm) assicura un guadagno assai elevato in tensione. La controreazione stessa è regolata ulteriormente tramite Ra, che modifica l'impedenza totale del gruppo RC costituito da R5, C4 e Ra stessa. Infine, il segnale, prelevato dall'uscita dell'integrato (piedino 6), esce su C5 e affronta la rete di taglio costituita da C6, D1, D2, componenti, questi, atti a recidere i picchi del segnale che esce dall'amplificatore operazionale ricchissimo di armoniche.

Rb è, infine, un attenuatore che deve essere regolato

in modo che il segnale distorto abbia eguale volume del segnale con S1 in posizione riposo. Il tutto è facilmente osservabile in fig. 1.

DESCRIZIONÈ

Quando vi accingerete a montare tale distorsore, innanzitutto procuratevi dei componenti adeguati, il più possibile simili di caratteristiche costruttive a quelli consigliati; quindi procuratevi un contenitore metallico: è preferibile una scatola Teko di alluminio. Poi, come potete osservare dalla fig. 3, cercate di montare i componenti senza errare in polarità: sopratutto l'integrato deve essere posizionato come da fig. 3, pena la sua distruzione. Sempre dalla medesima figura potete osservare che S1 è un deviatore semplice, meglio (per voi) se del tipo a pedale; esso dovrà servire unicamente alla commutazione del segnale IN o BY-PASS. Se comperate un doppio deviatore non fatevi prendere dalla tentazione di usare l'altra metà per commutare l'alimentazione: trovereste subito che è molto facile giochicchiare col pulsante quando non usate il distorsore e quindi non saprete più se l'apparecchio è acceso o spento. Per commutare l'alimentazione usate invece una delle due sezioni della presa di entrata che, come potete vedere dalla fig. 3, è una presa jack stereo: fate attenzione a riconoscere il capocorda attaccato al contatto che, a completa inserzione del jack, viene collegato a massa. A tale capocorda va collegato il -9 V della batteria.

Come nota particolare vi consigliamo di operare una scelta ottimale per Ra: tale potenziometro è funzione più o meno diretta delle caratteristiche dell'operazionale: trovate il valore migliore per avere ampia spaziatura dei livelli di distorsione: se vedete che l'effetto si fa sentire sino a fine corsa o quasi, sostituite Ra con un potenziometro di valore inferiore (provate 100 k Ω poi 50 k Ω). Tutto a vostro gusto. Notato che, con il commutatore della batteria collegato al jack d'entrata, per conservare la batteria a lungo dovrete staccare i cavetti quando non usate più il distorsore.

Per quanto riguarda il vero e proprio cablaggio dei componenti sulla basetta ricordiamo di usare molta pazienza con l'integrato e coi diodi zener, che sono componenti molto sensibili al calore. Montate - e saldate - per prima i resistori, poi i condensatori e infine i diodi e l'integrato. Infine effettuate i collegamenti con Ra, Rb, JI, J2, S1 con dei cavetti anche non schermati (non ha nessuna importanza) purché siano brevi. Evitate nel modo più assoluto giri e "spire di massa" scegliendo un solo "punto caldo" a cui fare confluire tutti i collegamenti di massa. Cambiate la pila quando vi accorgerete che la distorsione perde la sua limpidezza e diventa discontinua: infatti essa deve essere, entro certi parametri, proporzionale all'ampiezza delle vibrazioni della corda. A questo punto, se avete seguito fedelmente il cablaggio di fig. 3, siete pronti per l'uso.

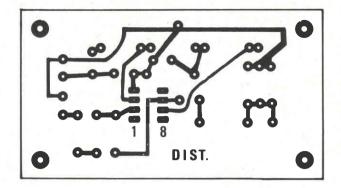
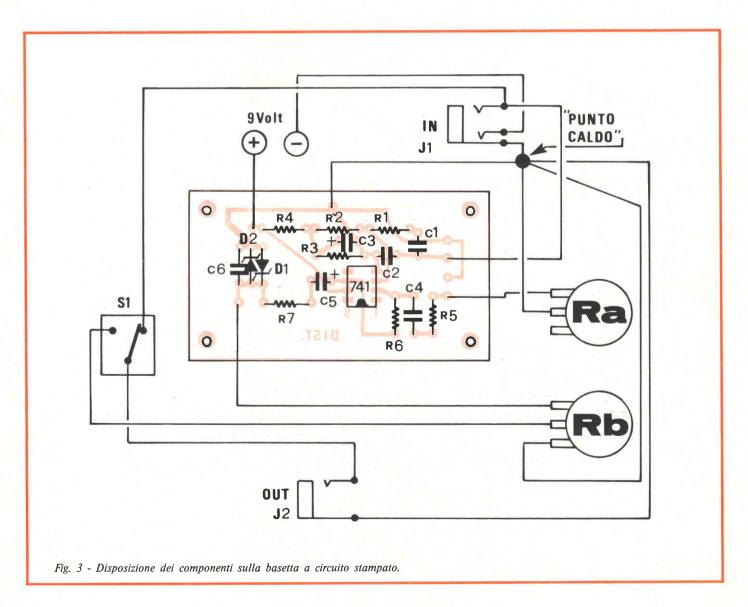
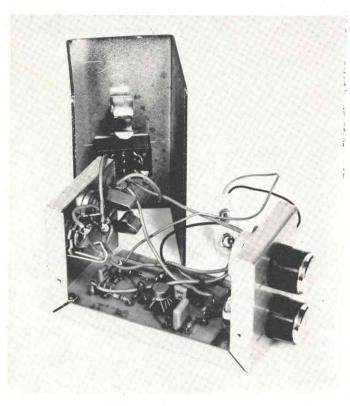




Fig. 2 - Basetta a circuito stampato in grandezza naturale.

PROVE PRATICHE

Vedrete subito che il "marchingegno" è molto versatile, sopratutto se amate il suono pulito anche se distorto: molti distorsori (altri!) mancano della necessaria limpidezza: ciò si rifletterà quindi, oltre che con arrabbiature e lamentele del chitarrista, in una esecuzione poco chiara specie quando,

Vista interna del distorsore per chitarra a realizzazione ultimata.

ELENCO DEI COMPONENTI

R1 : resistore da 10 kΩ R2,R3,R4 : resistore da 1 MΩ R5 : resistore da 4,7 kΩ R6 : resistore da 1 MΩ R7 : resistore da 10 kΩ

C1 : condensatore ceramico da 10 kpF - 12 V C2 : condensatore ceramico 1.000 pF - 12 V

C3 : condensatore elettrolitico 1µF - 12 V (meglio al tantalio)

C4 : condensatore ceramico 50 kpF - 12 V

C5 : condensatore elettrolitico 1 µF - 12 V (meglio al tantalio)

C6 : condensatore ceramico 1 kpF - 12 V

D1,D2 : diodi zener BZY88 C4 V 7

IC: integrato mA 741 (meglio in contenitore Dual-in-line)

oppure (L141T1 tondo)

Ra : potenziometro lineare 500 k Ω DISTORSIONE

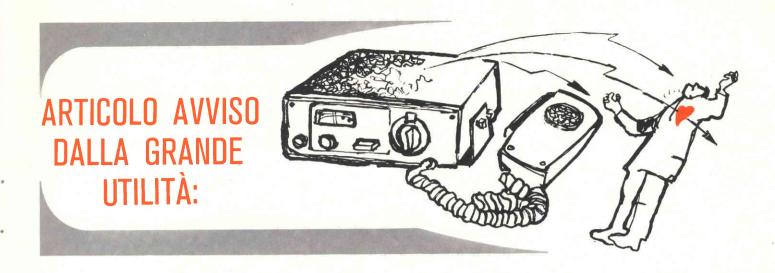
Rb : potenziometro lineare 10 kΩ VOLUME

S1 : deviatore a pedale

JI : presa jack femmina stereo θ 6 mm J2 : presa jack femmina mono θ 6 mm

1 : circuito stampato 80 x 45

tutti i resistori sono da 1/8 di W


nei giri veloci, si sovrappongono note risonanti. Provate tale distorsore per giudicare la differenza.

Se non sietè sicuri di trovare i componenti adatti rivolgetevi alla più vicina sede della GBC. Ma cercate, vi ripetiamo di fare delle scelte oculate, evitando di impiegare condensatori elettrolitici surdimensionati: cercate di non superare i 16 V lavoro. I ceramici a bassa tensione sono quelli della KCK reperibili alla GBC sotto l'elenco BK. Qualora non riusciste a procurarvi il 741 in versione Dual - in - line potete sostituirlo con quello in contenitore TO-99 tenendo presente che la numerazione dei piedini dei due integrati è corrispondente ossia, ad esempio, ambedue presentano al terminale 6 l'uscita dell'amplificatore operazionale.

Il Kit di questo distorsore può essere richiesto a "SPERIMENTARE" Via Pelizza da Volpedo, 1 - 20092 Cinisello Balsamo (MI) - al prezzo di L. 14.000.

Si accettano solo ordini con pagamenti anticipati tramite vaglia postale.

PORTATORI DI PACEMAKERS STATE LONTANO DAI TRASMETTITORI

gni giorno, come risulta dalle statistiche più aggiornate, in Italia si "impiantano" dai 50 ai 70 "Pacemakers" elettronici su pazienti con gravi insufficienze cardiache, e che senza l'ausilio di questi sussidi avrebbero una prognosi infausta.

I "Pacemakers", invece, oltre a permettere una vita pressoché normale, allungano l'esistenza dei malati di molti anni. Si può anzi dire che, chi ha la sventura di ammalarsi gravemente di cuore, nella sua disgrazia, è stato "fortunato" ad ammalarsi in questi anni che hanno visto il grande progresso della miniaturizzazione elettronica, perché solo dieci o quindici anni fa non avrebbero avuto speranza alcuna.

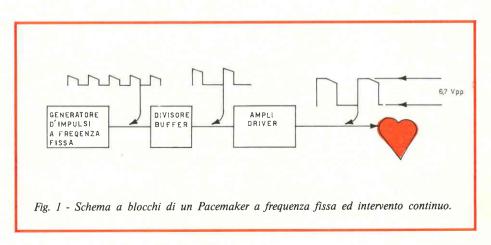
Questi (sia detto senza la minima ironia, è chiaro) "miracolati dell'elettronica" sono decine di migliaia, in queste lande; ma su di loro incombe un pericolo subdolo, che nessuno, ci sembra, ha messo in luce con sufficiente chiarezza. Si tratta della possibilità che l'apparecchio si blocchi a causa di un flusso RF intenso. Per causare un arresto (che può corrispondere ad un arresto cardiaco), non è necessario un campo RF estremamente intenso. Basta l'irradiazione che scaturisce da un "lineare" per CB schermato male, o privo della scatola metallica che funge da contenitore, tolta per una prova o per aumentare il raffreddamento, a causare un disastro.

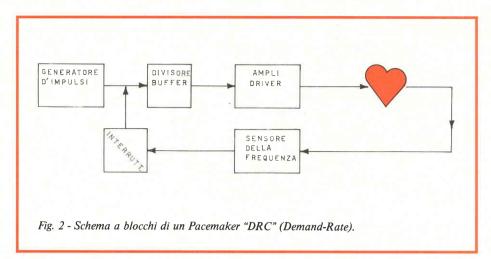
Quindi il pericolo è reale ed ora, per chi impiega un dispositivo del genere,

per chi ha un parente o un amico che lo impieghi, per chiunque si interessi del campo, chiariremo il "come" e il "perché".

QUANDO È NECESSARIO IL PACEMAKER

L'apparecchio trova un impiego ottimale quando il centro nervoso che controlla il movimento cardiaco manifesta una marcata tendenza ad "errare". Ad inviare segnali attivatori deboli, più lenti del necessario, o addirittura a "saltare" impulsi di comando.


Come sappiamo, il battito cardiaco in genere è automatico; la persona normale non può accelerarlo o rallentarlo con la


mente. Diciamo "persona normale" perché è noto che certi maestri dello Yoga hanno questa possibilità di controllo.

Peraltro, il sistema nervoso vegetativo influisce sui ritmi; il simpatico rende le contrazioni più frequenti e forti, il parasimpatico, che comprende il vago (decimo paio di nervi encefalici) al contrario le rende più lente e meno energiche.

Se tutto questo sistema di controllo, piuttosto complicato, "impazzisce", ecco che il colpito inizia a vivere malissimo: ha il costante terrore della morte improvvisa, soffre di vertigini, svenimenti, si affatica sproporzionatamente rispetto a qualunque lavoro svolga.

Poiché, come abbiamo detto, salvo pochi Yoghin, nessuno può far battere il

proprio cuore più rapidamente o almeno regolarmente con la forza della volontà, si rende necessario "qualcosa" che si sostituisca al centro-pilota difettoso e che attualmente non è possibile "riparare".

Questo "qualcosa" è appunto il Pacemaker, il cui nome, tradotto ha il preciso significato di "Marcapassi" che sottintende l'azione di far fare al muscolo conico "passi" regolari.

I PACEMAKERS ODIERNI

Dal punto di vista strettamente elettronico, l'apparato di nostro interesse consta di un generatore di impulsi VLF (Very low frequency) in grado di offrire, con assoluta sicurezza, "scatti" di tensione dalla durata compresa nell'ordine dei 3 millisecondi - 1 millisecondo. Questo generatore, realizzato mediante parti dall'estrema fidatezza, può essere transistorizzato UJT o IC (NE555); si usano comunque dei "chip".

Vi è poi un amplificatore dei segnaliseparatore-scaler, che eroga all'uscita impulsi dall'ampiezza, regolabile a seconda dei casi, tra 2,5 Vpp, e circa 10 Vpp. La corrente di lavoro è prevista sulla base dei 2 - 5 mA; il trigger è similquadro.

Vi sono oggi alcuni Pacemaker che funzionano "capacitivamente", ma il modello classico, sperimentato, di cui tutti i medici hanno una incondizionata fiducia, che si basa sull'esperienza, è sempre quello detto "sottopelle", innestato chirurgicamente, che ha il solo grande svantaggio di costringere ad un intervento ogni due anni circa, per il cambio delle pile, ma offre la possibilità di impiegare un breve catetere di connessione verso il cuore; termicamente è in posizione ottimale; ed in sostanza ha al suo attivo oltre 5 milioni di vite salvate, nel mondo, o, almeno, prolungate oltre ogni ragionevole speranza.

Questo genere di ·Heart Cloch (temporizzatore cardiaco o stimolatore cardiaco) di base è regolato per dare un minimo di 60 impulsi al minuto primo e 75, come dire, per "marcare i passi" di un cuore normale.

Vi sono comunque due tipi fondamentali di stimolatore. Il "Fixed Time" (detto anche FTC) ed il più raffinato "Demand Rate" (detto anche DRC): figure 1 - 2.

Il primo, più "vecchio", eroga impulsi rigidamente scalati, secondo le necessità che ha previsto il gruppo di medici interessati all'applicazione, ed il cardiologo in particolare.

Il secondo non interviene di continuo, ma si basa sulla raffinata idea di lasciar funzionare il cuore "naturalmente" per quanto possibile, e subentrare solo in caso di emergenza.

In altre parole, capta il battito, lo paragona al proprio "clock" interno, e se tutto è regolare, rimane inerte. Se però il cuore inizia a ... "balbettare" per una

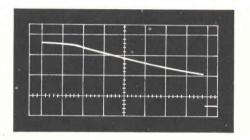


Fig. 3 - Forma d'onda erogata da un tipico Pacemaker. Carico: 470 Ω oscilloscopio Tektronix 58/A.

Carico: 4/0 Ω oscilloscopio Tektronix 58/A Scale : y (verticale) - 2 V/cm; x (orizzontale) 0,2 ms/cm.

ragione qualsiasi, entra prontamente in funzione e si sostituisce agli impulsi nervosi deficitari, fornendo la serie di picchi che servono a regolarizzare la situazione prima ancora che il portatore avverta il senso di disagio generalizzato che precede un attacco (è noto che i malati gravi di cuore "si ascoltano" di continuo).

Nei primi anni di applicazione, i Pacemakers hanno dato numerosi fastidi, e conseguenti decessi; ma è da dire che nella fase sperimentale rappresentavano la "extrema ratio" cui ricorrevano i clinici per cercare di far sopravvivere individui refrattari ad ogni cura classica, ormai "persi" per la medicina, senza speranze.

In certi casi, il contratto con il cuore si staccava, in altri sopravvenivano infiammazioni ed infezioni periodiche; tessuti cicatriziali aggravavano le lacune preesistenti nella funzione e non di rado un componente andava fuori uso (quasi nessun apparato elettronico funziona 24 ore su 24, giorno dopo giorno, senza *mai* soste).

Oggi, la situazione è grandemente migliorata, perché mentre i chirurghi hanno

quasi incredibilmente migliorato la tecnica di impianto (in genere, la sostituzione delle pile nella macchina non comporta che qualche giorno di degenza in clinica), e i tecnici che progettano gli stimolatori si sono arricchiti delle conoscenze tecniche derivate dalle ricerche spaziali.

In tal modo, scegliendo componenti particolarissimi, basi in "Thick Film" (uno studio in proposito è attualmente impostato presso i noti ricercatori della Teko. S. Lazzaro, Bologna) e componenti ultraaffidabili, il Pacemaker ha sì raggiunto un "top" di prezzo sui due milioni (in gran parte rimborsato dalle varie "mutue") ma anche un grado di sicurezza che poteva sembrare incredibile, agli albori della tecnica.

I PERICOLI PER CHI PORTA UN PACEMARKER

Qui torniamo all'argomento fondamentale.

Come è noto, le onde radio passano con la più grande facilità attraverso il corpo umano. Inoltre, è da considerare che non esistono, al momento, stimolatori "schermati". I modelli in uso, impiegano un tipo di plastica inerte, per il rivestimento, che non presenta il minimo ostacolo per i segnali RF, e nemmeno per i

campi magnetici in genere.

Posta così la situazione, è facile arguire che qualunque campo elettromagnetico che abbia una frequenza superiore a 60-70 impulsi al minuto può bloccare un Pacemarker DRC (Demand Rate) che "veda" nel treno di impulsi indotto il regolare funzionamento del muscolo che frattanto, invece è magari in uno stato comatoso. Analogamente, il campo può "agganciare" un FTC polarizzando la giunzione B/E, o E/B1, o G/S in modo tale da provocare il disinnesco delle oscillazioni permanenti, con le conseguenti che sono facili da arguire.

In pratica, chi impiega lo stimolatore, non dovrebbe *mai* accostarsi a generatori RF modulati; quindi niente CB, men che meno se il radiotelefono è impiegato con l'ausilio di stadi "lineari" RF. È niente "radioamatorismo" in genere.

Data la diffusione dei Pacemakers, sarebbe molto giusto se gli impianti Radar, le fabbriche che impiegano forni RF, stufe e microonde, saldatrici per plastica, apponessero all'ingresso un cartello che indicasse i pericoli concreti che l'area riserva ai cardiopatici.

Nulla però, in questo senso, è stato fatto, almeno a quanto ci risulta.

Sempre in merito alla fabbriche, basta che un motore dalla notevole potenza funzionante in alternata non sia "messo a terra" accuratamente, per "spegnere" lo stimolatore, talvolta.

Alle piccole distanze, anche i motorini possono nuocere.

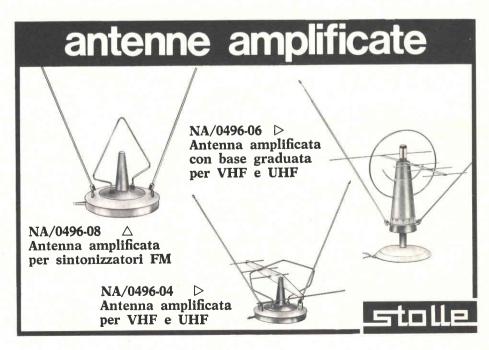
Per esempio, chiunque impieghi il Pa-

cemakers dovrebbe astenersi dall'uso del rasoio elettrico e stare alla larga dai frullatori, dalle lucidatrici e dagli aspirapolveri.

Possiamo certo affermare che sono molti di più gli ammalati di cuore uccisi dalle mancanze di precauzioni, che usano lo stimolatore, anziché i medesimi che subiscono il definitivo collasso per cause

Generalmente, purtroppo, i medici (anche per non far nascere nell'utente un " complesso di castrazione") trascurano di spiegare che basta un impianto elettrico dell'auto schermato male per bloccare il "pilota-pompetta" con i rimbalzi dello scintillìo.

Infatti, a torto, chi vive per mezzo dello stimolatore, è considerato dalla maggioranza dei "generici" scriviricetta una specie di "mezzo-morto" che deve concludere il proprio ciclo esistenziale a breve-medio termine.


Invece, pur considerando che la stessa elaborazione tecnologica che ha promosso i Pacemakers ne mette in pericolo il funzionamento tramite innumerevoli campi magnetici impulsivi, va detto che, come sempre, "chi si sa guardare, si sal-

Ouindi, il detto deve essere proverbio per coloro che portano lo stimolatore.

Nel momento in cui terminiamo questa segnalazione, ci giunge notizia che negli U.S.A. la Ditta "Stanicor" ha allo studio un tipo di stimolatore che può funzionare anche immerso nei campi magnetici più densi, grazie ad opportune variazioni circuitali, che evitano il pickup tramite le connessioni endotoraciche ed il medesimo circuito stampato o "Thick".

Noi speriamo che questa ricerca abbia un esito felice e rapido, ma sin che un eventuale modello pratico refrattario ai campi magnetici non sarà disponibile, dobbiamo ribattere le nostre raccomandazioni espresse in precedenza.

Se questo scritto servirà a scongiurare un solo incidente grave, avrà raggiunto lo scopo prefisso.

IL MARK

QUATTRO:

MODULO AMPLIFICATORE PLURIUSO

er realizzare amplificatori audio dalla potenza compresa tra 500 mW e 10 W, in genere si impiega un Circuito Integrato. Ciò perché l'IC è compatto, ha caratteristiche precise e semplifica assai le operazioni di montaggio.

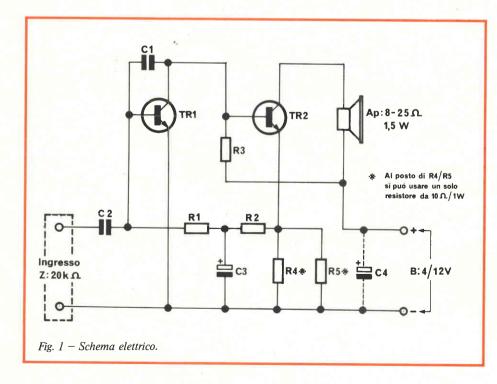
Si può opinare che se il sistema è comodo, didatticamente non ha grande validità; infatti chi ha cablato un blocchetto di plastica, alcuni condensatori e resistenze ed ha messo in opera il tutto, non ha certo imparato gran ché. Quindi, i principianti che vogliano arricchire il proprio

bagaglio di conoscenze, dovrebbero continuare nella costruzione di amplificatori muniti di parti "tradizionali", dette anche (con uno sgradevole americanismo) "discrete".

In questo articolo, parleremo appunto di un sistema audio che evita l'uso di integrati: non si tratta però di un apparecchio complicato, ingombrante o dalle modeste prestazioni, ma anzi, di un tutto moderno ed efficiente.

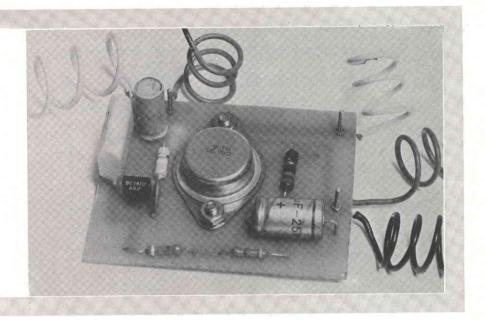
L'amplificatore usa due soli transistori, però, le buone caratteristiche di questi,

consentono di ottenere una potenza che, per apparecchi così semplici, sino a qualche anno fa era impensabile; ovvero 750 mW.


Le altre caratteristiche sono del pari buone: l'alimentazione non è critica: può andare da 4,5 V a 13,5 V. La distorsione è contenuta in una misura sopportabile; vale circa l'8 per cento a metà della potenza massima, ed in nessun caso supera il 10%.

La banda passante è eccezionalmente ampia per un apparecchio che dichiaratamente non è da classificare come HI-FI; infatti, entro i classici 3 dB, sale da 20/25 Hz ad oltre 16 kHz.

L'assorbimento non è eccessivo, per una apparecchio che ha lo stadio finale funzionante in classe A: a 12 V di alimentazione varia tra 80 e 110 mA.


Poiché i due transistori sono al Silicio ed il circuito impiega una fortissima controreazione c.c., il punto di lavoro è stabilissimo; tanto da permettere il buon funzionamento anche a temperature ambientali preoccupanti; per esempio +50°C. Chi pensa che questo sia un fattore dall'importanza secondaria, rammenti quante radioline e "radiolone" vanno fuori uso alla spiaggia, sotto il sole battente, perché mal stabilizzate. Qualcuno dirà: "Tanto di guadagnato; meno fracasso!" Giusto, ma i proprietari degli apparecchi non sono dello stesso parere e comunque, un dispositivo elettronico ben progettato deve, come quello che stiamo trattando, poter essere impiegato ovunque senza preoccupazioni.

Come si vede nella figura 1, le prestazioni annunciate non derivano da uno schema complesso, ma, se ci si passa il termine, semplicemente "azzeccato".

Bastano due soli transistori e poche altre parti per realizzare un amplificatore audio dalla banda larghissima, distorsione modesta e potenza sufficiente per i più vari impieghi. Ouesto è un apparecchio di alto valore didattico per il principiante, ma può essere utile anche al professionista.

Prototipo del modulo amplificatore a realizzazione ultimata.

Non si tratta di una novità: anni addietro, su queste stesse pagine, presentammo il MARK DUE, un amplificatore che aveva il circuito molto simile a questo, ma minori prestazioni perché impiegava transistori al Germanio, con la relativa elaborazione definita MARK TRE.

Ecco perché il nuovo progetto, o meglio il progetto rielaborato reca la sigla MARK QUATTRO; per una logica continuità

con i precedenti.

Ciò spiegato, vediamo i dettagli circuitali. I transistori sono connessi direttamente, ma non secondo il noto Darlington, che dopotutto non dà poi un guadagno molto elevato; ogni stadio lavora con l'emettitore a massa. Il segnale, tramite C2 giunse sulla base del TR1, e dal collettore di questo, le frequenze più alte sono retrocesse alla base tramite C1 in modo da correggere il responso e linearizzarlo. Contemporaneamente l'inviluppo giunge direttamente alla base del TR2, e dal collettore di questo all'altoparlante. L'R3 serve come carico del TR1 e come elemento di polarizzazione per il TR2.

Come è noto, gli stadi accoppiati direttamente non sono molto stabili; infatti la Ico del primo stadio (o meglio le sue fluttuazioni) è amplificata dal

seguente.

In questo amplificatore la tendenza a "shandare" è curata drasticamente con un circuito di controreazione totale che abbraccia il circuito intero. Osserviamolo.

La corrente di collettore del TR2, percorre ovviamente R4-R5, ed ai capi di questi si ha pertanto una caduta di tensione. Questo valore è retrocesso dall'R2, mentre la componente alternata è

"filtrata via" dal C3, quindi dall'R1 e torna alla base del TR1.

In tal modo, si ha un vero e proprio "anello di reazione" che protegge l'apparecchio, perché se il TR2 tende ad assorbire una corrente eccessiva, ne deriva una tensione parimenti eccessiva che serve da "freno" perché la polarizzazione del BC147 è alterata da questo transistore pilota il successivo per un punto di lavoro meno spinto.

Ciò è tanto vero, e talmente valido, che se si varia la tensione di alimentazione da 4,5 V ad oltre 13 V, la corrente assorbita a riposo rimane identica, o pressoché identica, infatti la controreazione stabilizza il tutto istantaneamente. Sono davvero pochi, gli amplificatori che possono vantare un'autoregolazione così efficace!

Se proprio si vuole rovistare nello schema alla ricerca di qualche difetto che "deve esserci", si noterà la connessione dell'altoparlante. La corrente del collettore del secondo stadio attraversa la bobina mobile di questo, ed allora il

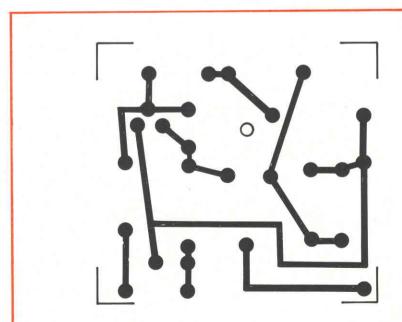


Fig. 2/a - Basetta a circuito stampato vista dal lato rame in grandezza naturale.

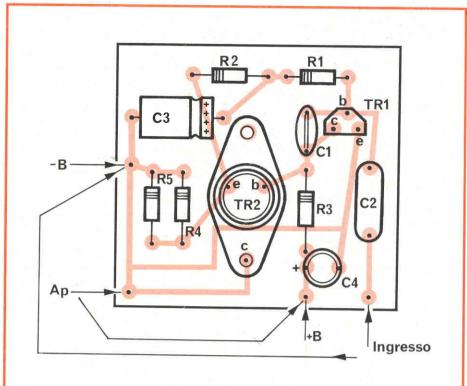


Fig. 2/b – Disposizione dei componenti sulla basetta a circuito stampato vista in trasparenza.

cono assume una posizione innaturale: un poco "spinto in avanti" oppure "risucchiato" a seconda della connessione. Il fatto può dare una diminuzione di rendimento nei suoni cupi, particolarmente; ma si avverte il difetto solo se l'altoparlante è "piccolo" e se ha una potenza modesta rispetto al massimo. Facendo uso di un diffusore da due o tre Watt per 750 mW, il "calo" è trascurabile.

Per chiudere con l'analisi del circuito, noteremo C4; questo condensatore bipassa la linea di alimentazione, ed è indicato "a tratteggio"; come dire che non è indispensabile. Ora, che sia facoltativo è vero, ma con degli ovvi limiti; per esempio, se l'amplificatore è alimentato in comune con un preamplificatore o qualche altro sistema ad alto guadagno precedente, un innesco parassita non è certo un fenomeno eccezionale, ma quasi... di regola.

Quindi è forse meglio montarlo sempre; in tal modo non potranno sorgere problemi futuri.

Ecco qui: abbiamo detto tutto; non vi è proprio nulla da aggiungere.

Vediamo allora "al volo" la parte meccanica; il montaggio.

Tutte le parti possono essere comodissimamente montate su di una basettina stampata abbastanza piccina: ad esempio da 75 mm per 70, o simili.

Per il TR2 il radiatore non è stettamente necessario; però, facendo funzionare il tutto alla massima potenza, dopo una ventina di minuti il BD111 inizia ad

arroventarsi, e non entra in valanga solo perché trattenuto dal circuito di controreazione. Quindi scelga il lettore: o evita di far lavorare il complesso alla potenza massima per periodi lunghi, o munisce il transistore di un radiatorino a rebbi verticali, non molto ingombrante.

Altro discorso particolare lo meritano R4-R5; questi due sono stati scelti perché dai calcoli, il resistore da inserire tra l'emettitore del TR2 e la massa risultava di $11~\Omega$. Non essendo questo disponibile, si erano collegati in parallelo due elementi da $22~\Omega$, ottenendo il desiderato.

In seguito, provando l'apparecchio, è risultato chiaramente che 10, 11 oppure $12~\Omega$ erano proprio lo stesso, ai fini del rendimento.

Veda quindi il lettore se preferisce l'impiego dei due resistori da 22 Ω , o di un resistore singolo da 10 oppure 12 Ω .

Nel primo caso i due devono essere al 5% e ciascuna da ½W; nel secondo l'unico resistore deve essere sempre al 5%, ma da 1 W.

Comunque, si impieghi un unico resistore, se ne scelgano due, la pianta delle connessioni di figura 2/b resta valida ... magari con un pochino di spazio sprecato.

Il lettore, quando sarà il momento di connettere il BC147, potrà rimanere assai preoccupato dalla brevità dei terminali: surriscaldarlo e rovinarlo sembrerebbe facilissimo. Invece, questo transistore regge incredibili surriscaldamenti, ed ha

i piedini che ha, perché i suoi progettisti hanno giudicato che fosse "robusto" a sufficienza per resistere anche a connessioni maldestre, con la stagnatura eccessivamente prolungata.

Quindi non vi sono problemi particolari in questo senso.

Men che meno per il TR2.

C3 e C4 hanno una polarità che deve essere rispettata.

Tutte le altre particolarità costruttive sono di "normale amministrazione" e non meritano cenni specifici.

Vediamo quindi il collaudo.

L'amplificatore offre le maggiori prestazioni con un carico di 15Ω (altoparlante). Per fortuna, questo valore non è insolito, ma corrente.

Può funzionare anche con un Ap da 8 Ω , ma assai meno efficacemente, così come d'altronde con diffusori da 18-22-25 Ω , che peraltro risultano assai meno reperibili. Un modo ulteriore di dare un buon carico al complessino, è collegare in serie (ma in fase!) due altoparlantini comuni da 8 $\Omega/1$ W.

In ogni caso, altoparlante o altoparlanti, per le ragioni esposte in precedenza non debbono essere "piccoli"; anzi, deve o devono essere previsti per poter esprimere un paio di Watt. Meglio se più.

L'impedenza d'ingresso dell'apparecchio è di circa 30 k Ω , quindi si adatta abbastanza bene alla maggior parte delle

sorgenti di segnale.

Non si pensi però di poter impiegare un microfono magnetico con traslatore. per la prova; una capsula del genere dà un segnale troppo debole, che non "piloterebbe" il TR1. Meglio una cartuccia fonografica, ma anche questa, senza preamplificatore, "rende" poco, come ampiezza. Se invece vi è il preamplificatore (si noti che questo è un amplificatore di "potenza") non vi è problema. Un pick-up piezoelettrico, per contro, può dare il segnale che serve; ma nel caso che lo si impieghi nelle prove sorge il problema del disadattamento di impedenza, che potrebbe forse essere in parte risolto collegando un resistore da 470 kΩ o valori simili tra C2 ed il "capo caldo" del cavetto schermato. Una certa distorsione, però, nel caso, sarebbe difficile evitarla; anche collegando (oh astuzia!) un filtro passa-basso a "T" in luogo del semplice resistore

Diciamo tutto questo, supponendo che il lettore non possieda un generatore di segnali audio, perché se tale strumento è disponibile, i problemi sono finiti.

La curva di figura 3 indica il responso del prototipo; se il lettore non introduce mutamenti nei valori delle parti ed impiega i transistori specificati, grossomodo, anche il duplicato avrà simili caratteristiche.

Volendo compensare l'attenuazione che si nota per frequenze inferiori a 70 Hz, e contemporaneamente l'andamento "esaltato" del responso sopra ai

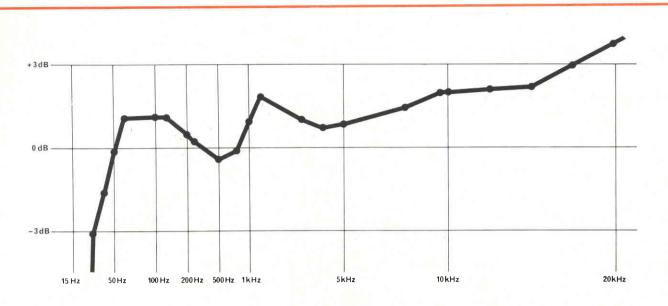


Fig. 3 – Curva di responso del prototipo. Carico resistivo da 12 Ω . Segnale ampiezza costante: 150 mV. VB = 12,5 V. Potenza 0 dB = 300 mV su 12 Ω .

12-15 kHz, si può maggiorare il C1 portando il valore a 2.200 pF oppure 4.700 pF. Sfortunatamente però, in tal modo si attenua severamente il responso in "alto" mentre in "basso" il miglioramento v'è e si nota, ma non risulta esaltante. Quindi la qualità *complessiva* non migliora.

L'amplificatore è abbastanza sensibile al "rapporto di guadagno" tra TR1 e TR2; se il primo (come avviene talvolta) ha un guadagno eccessivo e l'altro scarso, o viceversa, può avvenire qualche fenomeno di distorsione, anche se il circuito tende ad autocompensarsi. Ove si noti che la fedeltà è scarsa, R3 può essere portato a 2700 Ω , ed in serie si può collegare un trimmer potenziometrico da 3,3 k Ω . Manovrando quest'ultimo, sarà possibile raggiungere *in ogni caso* la migliore linearità.

ELENCO DEI COMPONENTI

Ap : Vedere testo. Altoparlante da 8-25 Ω , potenza minima 1,5 W

C1 : condensatore ceramico da 1.000 pF

C2 : condensatore a film plastico da 470 kpF

C3: condensatore elettrolitico da 160 µF/12 VL

C4 : condensatore elettrolitico da 250 µF/15 VL

R1 : resistore da 4,7 k Ω - $\frac{1}{2}$ W - 5%

R2 : eguale ad R1

R3 : resistore da 3900 Ω - ½ W - 5%. Vedere testo (collaudo)

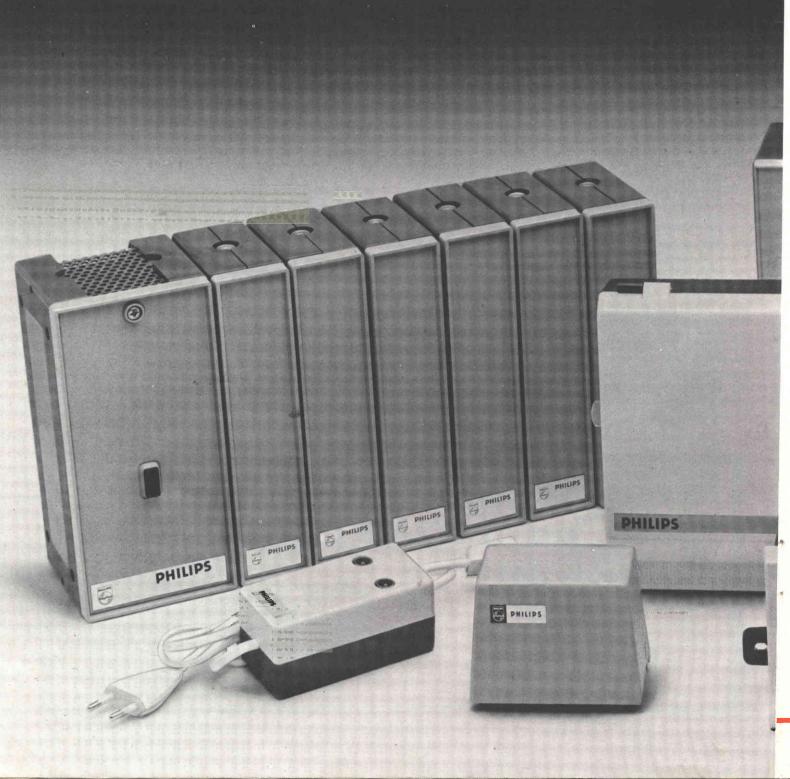
R4 : resistore da 22 Ω - ½ W, 5 %. Vedere testo

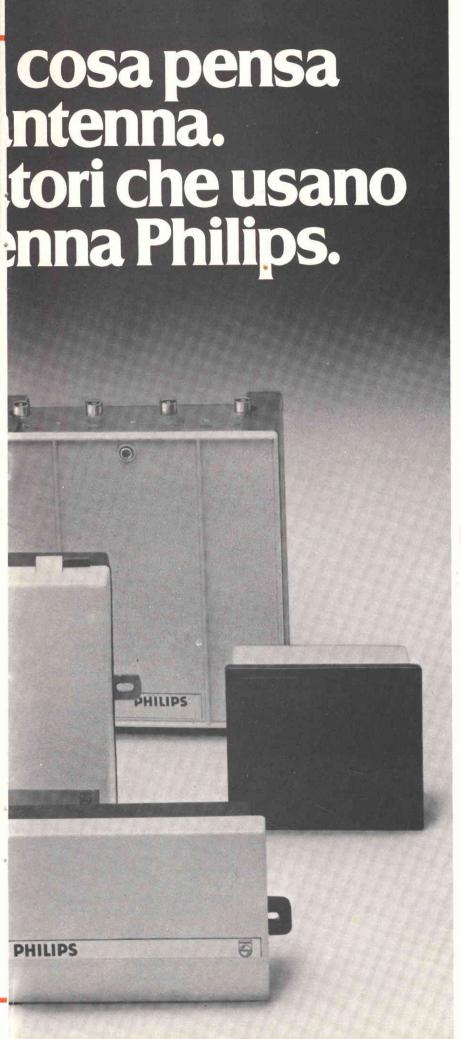
R5: eguale ad R4. Vedere testo

TR1: transistore BC147/A

TR2 : transistore BD111

smettetela di urlare ora c'é BOUYER


Megafono amplificato a transistori, potenza 4W. Leggero e compatto, particolarmente indicato per trasmettere messaggi in manifesta zioni sportive, cantieri di lavoro, cortei. Alimentazione con pile da 1,5 V.


ZA/0154-18

in vendita presso tutte le sedi G.B.C.

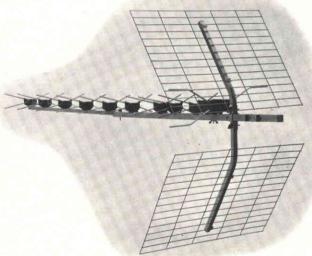
Non chiedete alla Philips del suo materiale d'a Chiedetelo a quegli installa soltanto materiale d'ante

Philips mette a disposizione una gamma di prodotti, per ogni esigenza di impianto:

Antenne radio e TV, per canali nazionali e da ripetitori di programmi esteri.

Amplificatori a larga banda e di canale, con elevata affidabilità di funzionamento e di impiego.

Preamplificatori di canale e con A.G.C. ad elevata sensibilità di ingresso.


Convertitori da palo per canali in banda Va da ripetitore.

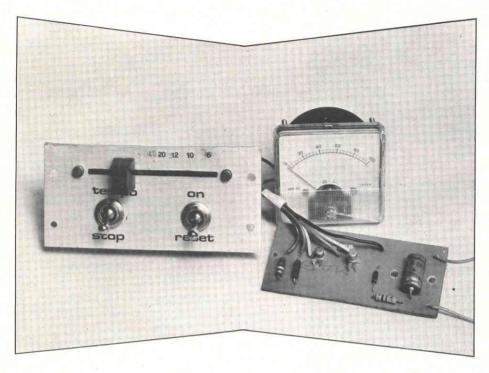
Componenti passivi: prese tipo serie resistive ed induttive, prese terminali - derivatori e ripartitori ibridi.

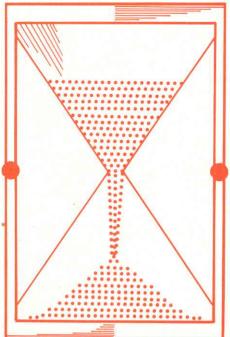
Cavi coassiali a bassa perdita ed a basso fattore di invecchiamento, con isolante di tipo espanso e compatto.

Teledistribuzione amplificatori, componenti e cavi speciali per impianti particolari destinati alla medio-grande distribuzione di sistemi multicanale via cavo.

Assistenza in fase di progetto di installazione e di collaudo delle reti TV.

Sįstemi Audio Video


PHILIPS


PHILIPS S.p.A. - Divisione Sistemi Audio-Video - V.le F. Testi, 327 -20162 Milano - Tel. 6436512-6420951

	ato alla vostra	produzione
e vi prego di	spedirmi:	

- ☐ Catalogo generale materiali d'antenna.
- ☐ EDS informazioni regolarmente.

SPERIMENTARE - J.C.E. - 4/76

olte volte leggiamo che redattori poco fantasiosi di pubblicazioni tecniche, intitolano "Clessidra elettronica" la descrizione di un temporizzatore convenzionale.

Leggiamo e via di seguito, senza rilevare lo sbaglio che contiene questo abbinamento. Sbaglio? Sì, infatti la clessidra non è un timer, e viceversa.

Perché? Lo vedremo subito. Siamo d'accordo con il pensiero che questo "orologio degli antichi" indichi il passa-

re del tempo, altrimenti orologio non sarebbe stato. Ma, fatto da notare, lo indica *istante per istante*, con il fluire della sabbia più o meno colorata che contiene.

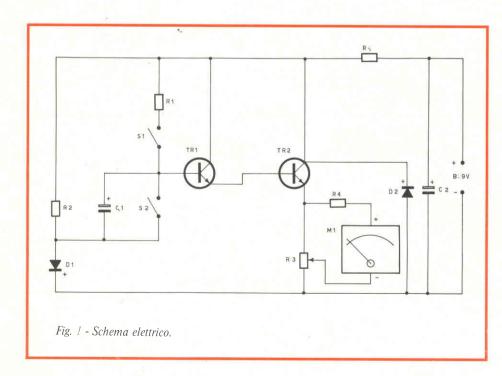
Ciascuno, osservando il "fiaschetto" sovrastante e quello sottostante, paragonando il contenuto, può farsi un'idea dei secondi o dei minuti che devono ancora trascorrere prima che il trasferimento sia compiuto, ed il tempo considerato, quindi, scade.

Nulla di simile avviene nella maggioranza dei timers elettronici; dal momento in cui si preme il bottone di avvio del ciclo a quello in cui il relais scatta, si accende la lampadina-spia e simili, non v'è modo di controllare il periodo trascorso ed il residuo.

Quindi non vi è equivalenza tra le funzioni dei due apparecchi.

Tra l'altro, la clessidra non può essere programmata.

Presenteremo ora invece un "parente stretto" della clessidra, realizzato per via elettronica.


Si tratta di un indicatore dello scorrere del tempo.

In pratica, si ha un microamperometro azzerato, che, non appena scatta il tempo di lavoro (appena "si capovolge la clessidra" per analogia, diremo) fornisce una indicazione crescente. L'indice, a seconda della programmazione del tempo, può giungere a fondo scala in 5 secondi, oppure in 10, o in 20 e così via sino ad un minuto primo ed oltre.

Quindi, non si ha solo l'indicazione del "tempo scaduto" che appunto corrisponde all'ultima tacca della scala, ma qualunque lavoro si stia compiendo, che richieda un intervallo preciso, alzando gli occhi si può vedere "quanto resta" per provvedere più rapidamente o più lentamente alla bisogna.

Il lettore malignetto, ora non dica: "Ah, che intelligenti! Hanno inventato l'orologio..."

La critica non calzerebbe perché l'orologio ha la lancetta dei secondi che compie un intero giro *in un minuto*, e non si può programmarla in modo

UNA VERA CLESSIDRA ELETTRONICA

Volendo inserire questo apparecchio in una categoria di strumenti elettronici, possiamo definirlo una sorta di Timer, perché segnala il passaggio del tempo. Come Timer, però, è assai particolare e sostanzialmente diverso dai suoi consimili, perché non si limita a segnalare intervalli trascorsi, ma in ogni istante manifesta il tempo che scorre con quello che è passato e quello che deve ancora passare prima che si completi il periodo impostato. In tal modo, ha una utilità "diversa" rispetto ai modelli tradizionali; può servire ad altri impieghi.

tale che percorra i 360° in dieci secondi, poniamo.

Ma la programmazione, come si lega al "funzionamento" della clessidra, a vo-

ler essere pignoli?

Il classico misuratore del tempo aveva un funzionamento immutabile! Beh, evidentemente una differenza v'è, altrimenti l'utilità di questo apparecchio scadrebbe; il nostro indicatore però può essere raffrontato ad una serie di clessidre, una piccolissima, quando il tempo è programmato per il minimo, una un poco più grande, una più grande ancora e via di seguito.

Abbiamo così spaccato il classico cappello in quattro, circa la natura di questo strumento e le sue analogie; di più

è inutile aggiungere.

Vediamo quindi il circuito elettrico: figura 1.

In sostanza, il tutto è un Darlington che impiega TR1 e TR2.

Poiché il circuito ha un guadagno grandissimo, ed una variazione della tensione di alimentazione lo può influenzare seriamente, sulla tensione VB è inserito lo Zener D2 che lo stabilizza, tramite la caduta che produce sulla R5.

All'ingresso del Darlington vi è il condensatore C1, che si carica sulla tensione stabilizzata chiudendo S1.

La coppia di transistori legge questa carica, e dà un "segnale" proporzionale, che è la corrente di emettitore del TR2, "letta" dal microamperometro M1 tramite il resistore R4.

Per evitare che vi sia un "tratto morto" all'inizio della scala, si impiega una piccola tensione di "offset" ricavata tramite il diodo D1 che lavora nella conduzione diretta, con R2 in funzione di limitatore della corrente.

È da notare, che il sistema, così com'è, non prevede l'arresto dell'indice a fondo scala; ovvero, se si imposta un tempo di dieci secondi, tanto per fare un esempio, all'undicesimo l'ago "esce" dalla scala e se si lascia in operazione il tutto, l'indicatore è sottoposto ad una corrente eccessiva.

Occorre quindi un reset rapido, che è rappresentato dall'interruttore S2. Questo pone in corto il condensatore e lo scarica all'istante, per cui l'indice torna all'inizio della scala pronto per un nuovo ciclo di lavoro.

Il lettore si chiederà a cosa serva allora S1, marcato "Tempo-Stop".

Se si apre quest'altro interruttore, la carica del C1 si interrompe, e di conseguenza l'indice si blocca nel punto della scala in cui è al momento dell'operazione.

Se, dopo qualche tempo S1 è richiuso, la carica riprende e così l'indicazione crescente, che tende a raggiungere il fondo-scala.

Il che, al lettore può anche non dir nulla; ma facciamo un esempio pratico. La nostra clessidra è impiegata per controllare una fase di lavoro in un procedimento chimico; per esempio, un dato composto deve bollire per un minuto esatto. Sessanta secondi. L'operatore controlla il tempo sulla scala. Al quarantesimo giunge un collega che gli chiede urgentemente una firmetta in

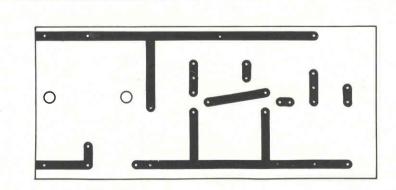
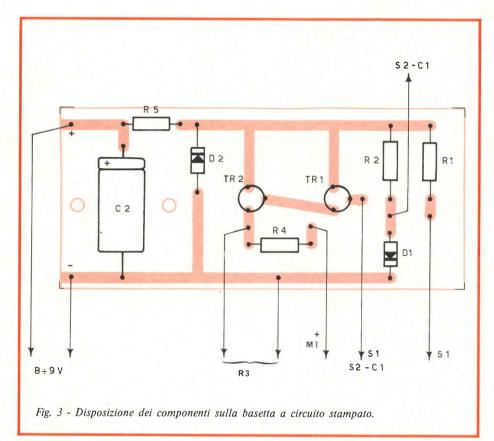



Fig. 2 - Basetta a circuito stampato in grandezza naturale.

calce per un collaudo. Il nostro chiude per un attimo la fiamma e blocca il tempo mediante S1. In tal modo, l'indice manifesta che il tempo di bollitura è stato sin'ora esattamente due terzi del richiesto. Traccia quindi lo scarabocchio richiesto, rialza la fiamma, e riavvia il conteggio del tempo che prosegue sino al termine.

Durante la pausa, l'indice resterà fer-

mo sulla tacca che aveva raggiunto, e l'intervallo può durare una quindicina di secondi o simili senza che intervenga la minima variazione.

Poiché questo segnatempo non è previsto solo per impieghi tecnici, ma anche per giochi di abilità e simili tra amici "durante una festa: "Vediamo chi riesce a raccogliere più noci dal pavimento con le labbra e a deporle in

51 0 0 0 (b) TR1 - B D1-R2 R4(e)TR2

Fig. 4 - Disposizione delle parti staccate sul pannello.

quel vaso lì, voi che vi vantate tanto d'essere atleti; un minuto di tempo per ciascuno!") lo stop sarà utile a chi funge da "controllore" o arbrito per dichiarare la scadenza dell'intervallo concesso, e mostrare al concorrente che è stato "spaccato il secondo".

In sostanza, l'interruttore Tempo-Stop. fornirà la clessidra di una sorta di pulsante da cronometro.

Commentato così il circuito, vediamo il montaggio.

Il nostro prototipo che appare nelle fotografie, è privo di contenitore perché normalmente trova posto su di un pannello dove sono anche altri strumenti e controlli.

Normalmente avrà la sua brava scatola che può essere di materiale plastico o metallico, contenente anche le due pile da 4,5 V (connesse in serie) che servono per l'alimentazione.

Come si vede, per R3, il potenziometro che imposta il tempo, noi abbiamo preferito un modello a cursore, ma nulla impedisce che se ne usi uno tradizionale, che per il montaggio richiede minori complicazioni di foratura. Il potenziometro, con l'indicatore, S1 ed S2, sarà sistemato sul fronte del contenitore.

Tutte le altre parti saranno montate su di un piccolo circuito stampato, che si scorge nella figura 2 al naturale, ovvero in scala 1:1.

Si noterà che questo non comprende C1; come si vede nella figura 3, il condensatore della temporizzazione, almeno nel prototipo, è direttamente connesso ai terminali dello S2 (Reset). Ciò, perché noi volevamo sperimentare diversi valori ed allora sarebbe stato scomodo "pasticciare" nello stampato, a rischio di rovinarlo.

Poiché il valore più conveniente è risultato quello di 25 µF che appare nello schema, il lettore non ha alcuna necessità di compiere ulteriori sperimentazioni e se lo gradisce può montare Cl sul circuito stampato, collegandolo con il terminale negativo alla piazzola ove si riuniscono R2 e D1 e con il positivo alla base del TR1.

Il completamento della basetta è semplice: la prima precauzione da prendere sarà di controllare che i due diodi siano collegati nel giusto senso. Se la polarità dello Zener è inversa, L'alimentazione sarà praticamente cortocircuitata dalla sua conduzione diretta; l'apparecchio non funzionerà mentre il diodo tenderà a rompersi.

Se la polarità del D1 sarà inversa, non si otterrà l'azzeramento dell'indicatore.

Non meno importante è la polarità del C2, del C1 e la connessione dei transistori.

Comunque, tutto sommato si tratta di lavori di ordinarissima amministrazione, quindi anche un principiante può intraprendere la costruzione di questo

apparecchio con successo.

Le connessioni tra la basetta stampata ed il pannello, come lunghezza non hanno importanza, in quanto non vi sono segnali in circolazione, ma solo correnti continue. Effettuandole, però, si deve tenere presente che l'indicatore è polarizzato, ovvero ha un terminale positivo ed uno negativo.

Il positivo deve pervenire ad R4, ed il negativo al cursore del potenziometro R3. Se la connessione è inversa, l'indice, invece di "andare a destra", cercherà di spostarsi "a sinistra" ovvero andrà a forzare sull'arresto dell'inizio della scala.

Il collaudo della "clessidra" è molto semplice; dopo aver portato R3 a metà corsa si aprirà S1 e si chiuderà S2. Subito l'indice deve iniziare a muoversi verso il fondo scala, che raggiungerà dopo un tempo determinato dalla posizione del potenziometro. Azionato il reset, si può provare con un valore di R3 diverso, minore o maggiore.

Se il circuito funziona come previsto, dando tempi che corrono tra pochi secondi ed un minuto primo circa, tutto è regolare e si può procedere alla calibrazione della manopola del regolatore.

Per questa funzione occorre un cronometro ed un poco di pazienza; o un... "molto" di pazienza. In pratica si deve determinare il ritardo che può essere ottenuto per ogni posizione della manopola di R3, e marcare il tempo relativo, in secondi, sul pannello. Si u-

ELENCO DEI COMPONENTI

C1 : condensatore elettrolitico da 25 µF/9VL C2 condensatore elettrolitico da 100 µF/12VL

D1 : diodo 1N4007 da non sostituire D2 : diodo Zener da 6,8 V, 1/2 W

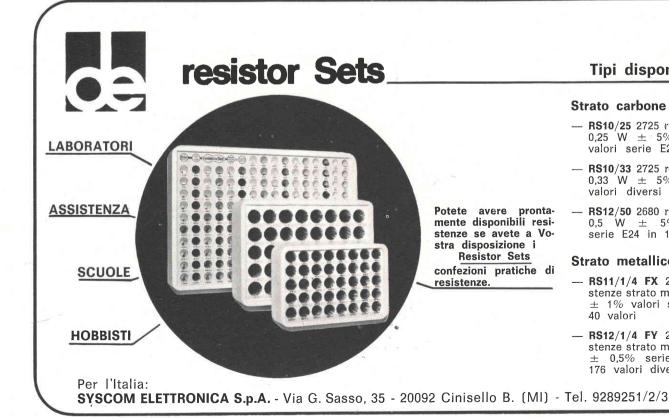
M1 : indicatore da 100 µA

RI : resistore da 220 kΩ, 1/2W - 10% R2 : resistore da 2200 Q, 1/2W - 10%

R3 : potenziometro lineare, rotativo oppure a cursore, da 500 Ω

: resistore da 27 kΩ, 1/2W - 10% R4 : resistore da 100 Ω, 1/2W - 10% R5

SI : interruttore unipolare S2 : interruttore unipolare


TR1 : transistore BCY58 o equivalente TR2 : transistore BC108 o equivalente

seranno caratteri trasferibili a cera, per la scaletta, o eventualmente un normografo.

Man mano che il lavoro procede si noterà che la funzione è nettamente esponenziale, ovvero, per ritardi di pochi secondi le variazioni si hanno piccole variazioni con ampi spostamenti della manopola, mentre per molti secondi basta spostare minimamente il controllo e si passa, poniamo da 40" a 60".

L'unico svantaggio di questa funzione, è che la marcatura deve essere molto precisa, in pratica; ma che occorresse pazienza lo avevamo premesso, e chi non ne ha... forse è meglio che si dedichi ad hobbies diversi dall'elettronica!

Una ultima nota: se il Cl è di qualità scadente, non sarà possibile ottenere la gamma dei tempi più prolungati, superiori ai 30 secondi. Questo condensatore deve essere quindi scelto con particolar cura, evitando le marche piuttosto sconosciute, ed in particolare gli elementi di ricupero o invecchiati.

Tipi disponibili

Strato carbone

- RS10/25 2725 resistenze $0.25 \text{ W} \pm 5\% \text{ m} 170$ valori serie E24
- R\$10/33 2725 resistenze $0.33 \text{ W} \pm 5\% \text{ m} 170$ valori diversi
- RS12/50 2680 resistenze $0.5 \text{ W} \pm 5\% \text{ valori}$ serie E24 in 176 valori

Strato metallico

- RS11/1/4 FX 2000 resistenze strato met. 0.25 W ± 1% valori serie E12 40 valori
- RS12/1/4 FY 2640 resistenze strato met. 0,25 W \pm 0,5% serie E48 in 176 valori diversi

I MONTAGGI REPERIBILI ANCHE IN KIT

UK 242

Raramente, in un apparecchio elettronico, semplicità ed utilità si accompagnano tanto bene come in quello che descriviamo qui. Si tratta di un multivibratore che ogni secondo produce la chiusura di un robusto relais, dai contatti che possono reggere 5 A o 220 V. Poiché di questi ve n'è una coppia, il sistema può controllare dispositivi luminosi che assorbano sino a 2.000 W (!), quindi è interessantissimo per impieghi pubblicitari o di avviso generico. o di emergenza...

hi ha percorso un'autostrada germanica, negli ultimi anni, avrà senza dubbio scorto qualche macchina in panne, parcheggiata ai bordi, in attesa del soccorso che comunque là giunge con una sollecitudine ed una precisione tutta tedesca.

Avrà notato, in questi casi che le vetture in attesa di rimorchio manifestano il loro stato di fuori uso con una segnalazione utile ed originale; ovvero, impiegano contemporaneamente sia la serie dei lampeggiatori destri che sinistri.

Il sistema è interessante, perché chi sopraggiunge non ha il classico dubbio che suona: "Ecco quello lì sulla corsia di emergenza; che diavolo starà facendo? Vuoi vedere che appena lo raggiungo mi salta fuori?". No, vedendo l'auto che sprizza luci tutt'attorno, già di lontano si comprende al volo la situazione senza possibili "tuffi al cuore" nelle serate di caligine e nebbia.

Intendiamoci, non vogliamo dire che il "doppio lampeggio" surroga il triangolo catarinfrangente, specie perché quest'ultimo è imposto dalla legge; piuttosto, lo integra aumentando la sicurezza. Per esempio, quando la sera (momento preferito dalle macchine dispettose per guastarsi) e sopravviene la panne, il guidatore deve mettersi a frugare nel baule per cercare il triangolo, ma questo sovente si ficca sotto la ruota di scorta o si nasconde tra bagagli ed accessori. La ricerca quindi non di rado dura un poco, e nel frattempo la vettura è esposta ai tamponamenti; più che mai micidiali considerando che l'automobilista al momento è proprio dietro e chinato nel vano, quindi non può vedere se sopraggiunge uno sbadato, un guidatore stanco con i riflessi ottusi, uno che ci veda poco, con le immaginabili conseguenze.

Se è disponibile il "doppio" lampeggiatore, mentre si cerca il triangolo, si cammina sulla via per disporlo, lo si monta, basta azionare la corrispondente levetta per avere subito e frattanto la segnalazione di emergenza.

Purtroppo, però, quasi nessuna macchina italiana lo prevede, a differenza, appunto, dai modelli tedeschi e francesi.

Descriviamo allora un sistema che completa (anche) l'impianto elettrico dell'auto; si tratta di un semplice multivibratore astabile particolarmente previsto per accendere e spegnere contemporaneamente i segnalatori. Tra l'altro, per azionarli ad una cadenza assai più rapida di quella "naturale" sì da sottolineare la situazione anomala, l'emergenza.

Poiché il sistema comprende un relé robustissimo, in grado di controllare una intensità di 5 A per ciascuno dei due contatti commutatori, e dato che questi (oltre che a bassa tensione possiedono un isolamento tanto buono da lavorare anche sulla rete luce, a 220 V, la potenza controllabile è elevata: 1 kW per ogni "via". Nulla di meglio per far lampeggiare scritte di richiamo tipo "vettura speciale". festoni luminosi, o eventualmente grosse luci di allarme. In sostanza, anche se l'applicazione più immediata è quella automobilistica, il nostro apparecchietto ne ha altre innumerevoli che sarebbe ora inutile enumerare, poiché chi legge, impiegando la propria fantasia, forse può andare anche "più in là" di quel che potremmo immaginare o suggerire noi.

Vediamo quindi il circuito elettrico: figura 1.

Questo è assai classico; nessuna sorpresa, un tutto collaudato e pratico di cui ci si può fidare.

I due transistori, TR1-TR2, lavorano "a bilancia" ovvero alternativamente.

Supponiamo che al momento in cui si chiude l'interruttore "SW" il primo inizi a condurre. TR2 risulterà interdetto, quindi la sua base avrà un potenziale negativo. Questo stato non durerà a lungo però, dato che R5 lascerà passare una corrente che modifica la carica del condensatore C1, tramite TR1 che frattanto. essendo passato in regime di saturazione, equivarrà ad una resistenza bassissima verso il negativo generale.

A questo punto, TR2 inizierà a sua volta a condurre, essendo divenuta positiva la sua base, ed in breve si saturerà. mentre TR1 inizierà ad interdirsi.

Tramite la carica-scarica di C1 e C5, tale funzionamento si ripete di continuo, ed il tempo necessario all'inversione di funzioni è di circa un secondo, dato che gli elettrolitici detti hanno una capacità piuttosto grande. Quindi, in pratica, TR2 conduce per un secondo, poi è bloccato per un altro secondo, e via di seguito. Ovviamente, mentre TR2 è nella fase di conduzione, la sua corrente di collettore attraversa la bobina del relais "RL", quindi questo si chiude per un secondo, poi si riapre per un altro, si richiude e così di seguito all'infinito.

Il montaggio del nostro dispositivo è molto, semplice, tanto che qualunque principiante lo può eseguire in un paio

d'ore a far tanto.

Nella figura 2 si vede "in trasparenza" il circuito stampato da impiegare, con le

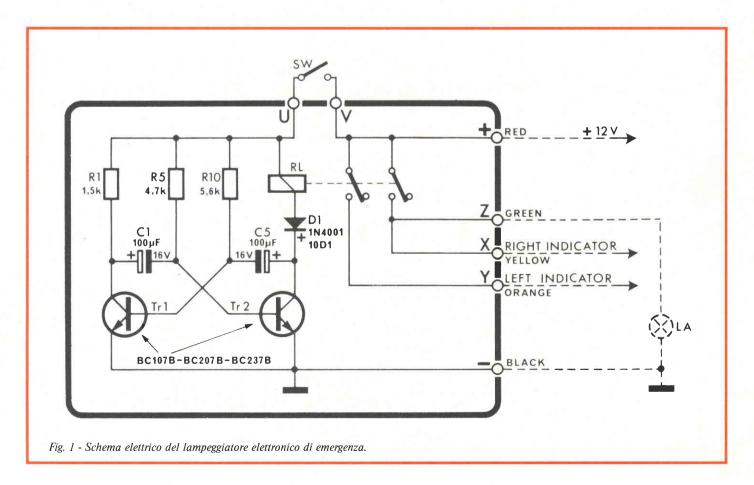
sagome dei componenti.

In pratica, l'unica questione degna di nota, è la polarità delle parti, durante il cablaggio; particolarmente per i condensatori C1 e C5, ma non di meno per il diodo D1, che se è inverso blocca la sequenza di lavoro impedendo lo scorrimento della Ic del TR2.

Come si vede nel circuito elettrico, i

LAMPEGGIATORE ELETTRONICO DI EMERGENZA

transistori possono essere del tipo BC107B, BC207B oppure BC237B. Anche se si tratta di modelli alternativamente plastici e con il "case" metallico, le relative connessioni formano sempre il classico "triangolo" con il terminale della base al vertice, quindi non vi sono problemi di riconoscimento.


Il relé RL si innesta nel circuito stam-

pato in un verso solo; non sono possibili errori.

Per completare la basetta si effettueranno le connessioni all'interruttore generale SW, e si preparerà una treccia di fili flessibili dall'isolamento diversamente colorato. Questa, sulla basetta farà capo al positivo generale (filo rosso: red) ed al negativo (filo nero: black), nonché ai contatti di utilizzo, punti X-Y-Z, ove giungeranno rispettivamente i fili giallo (yellow) arancio (orange) e verde (green).

Connesso l'interruttore, il tutto potrà essere collaudato; serve unicamente una tensione CC di 12 V da applicare ai fili rosso e nero tenendo d'occhio la polarità.

Azionato SW, dopo un secondo il relais inizierà a scattare in chiusura e poi

cadrà a riposo, e poi di nuovo vi sarà il periodo di chiusura e riposo, sempre con un secondo di fase di attrazione ed un secondo in rilascio.

A questo punto, il circuito stampato potrà essere infilato nelle scanalature previste all'uopo nell'involucro plastico, l'interruttore sarà montato sul coperchio, la treccia dei fili uscenti passerà tramite l'apposito varco praticato nella scatola, ed il tutto sarà completato chiudendo il coperchio con le quattro viti.

Completeremo la nostra esposizione esemplificando, ora, alcuni casi tipici di montaggio funzionale; ovvero di utilizzo dell'apparecchio.

IL LAMPEGGIATORE DI EMERGENZA

Come dicevamo all'inizio, questa è una tipica, proficua applicazione del dispositivo. Se si collega al filo giallo uscente (Yellow-Right indicator) l'indicaore di direzione destro, ed il filo arancione (Orange-Left indicator) alla luce di direzione sinistra, quando SW è aperto non avverrà nulla perché le lampadine faranno capo ai contatti normalmente aperti del relé (NO), quindi saranno normalmente controllabili mediante la leva di inserzione presente sul cruscotto della vettura. Come si vede nella figura 3, seguendo il circuito, chiuso "SW" quale che sia la posizione del commutatore. tutte le luci entreranno in azione assieme, comandate solo dal relais.

Per effettuare l'installazione l'apparecchio potrà essere sistemato sotto il pannello degli strumenti dell'automobile, portendo il filo rosso alla chiave (interruttore generale), e quello nero a massa mediante un fusibile.

Il filo verde, che in questa applicazione rimane libero, può servire per una spia interna facoltativa, o rimanere non connesso.

SEGNALATORI DI EMERGENZA, FESTONI

L'apparecchio sarà alimentato comunque con 12 Vc.c.

Non è richiesta una tensione stabile,

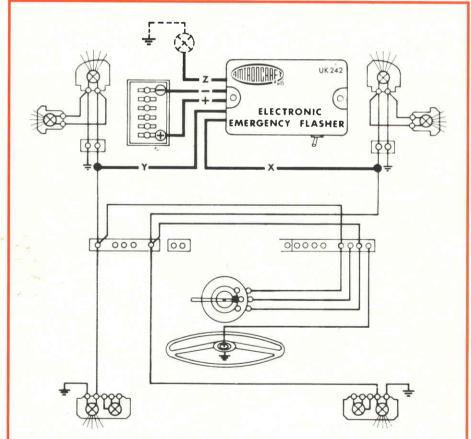


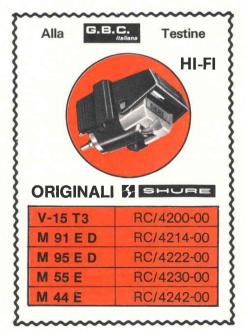
Fig. 3 - Comandate solo dal relè tutte le luci entreranno in azione assieme qualunque sia la posizione del commutatore.

quindi un qualunque caricabatteria può servire, anche del tipo normalmente reperibile presso certi punti di vendita di benzina, e varie stazioni di servizio; notoriamente rudimentale.

Certo assai meglio servono gli Amtroncraft UK 606, UK 692, UK 862 ecc.

Per il carico si potranno ripartire i festoni o le ampade sui due deviatori del relais (filo giallo ed arancio) sì da non superare il valore di corrente consentito.

L'intensità di 5 A, comunque, è notevolissima; se si pensa che un bulbetto normalmente impiegato per vetrine, mostre, Alberi Natalizi ecc., assorbe appena 50 mA (0,05 A) si vede che ogni "ramo" del relais ne può comandare *cento*, quindi in tutto, a 12 V, si possono avere *duecento* luci a 12 V-0,05 A, che funzionano alternativamente.


Il che, indubbiamente schiude molte possibilità all'art-decò pubblicitaria, nel campo delle tensioni basse.

COMMUTAZIONE DI CARICHI FUNZIONANTI IN CA

Poiché il relè impiegato dall'apparecchio comporta la tensione di 220 V, è possibile *tagliare* la pista in rame del circuito stampato di figura 2 facente capo alle armature mobili, e pur alimentando il nostro dispositivo a 12 V, uzilizzare i *soli contatti* per operare luci intermittenti alimentate a rete.

Come abbiamo premesso, il carico, per 220 V non deve superare il kW, ma evidentemente questa potenza è sovrabbondante per ogni uso: si pensi a che razza di "lampadona" è quella da 1.000 W, ed a che luce sprigionano dieci normali bulbi da 100 W! In pratica, si possono commutare due interi parchi lampade.

Nell'impiego CA vi sono solamente due controindicazioni; la prima è che i fluorescenti non assicurano un lampeg-

gio opportunamente cadenzato, perché non sempre riescono ad innescare nello spazio-tempo di 500 ms che è il prevedibile. Quindi niente "tubolari".

La seconda è che se per particolarissimi ed anche insoliti usi si dovesse azionare un motore elettrico, con il relais, la potenza di 1.000 + 1.000 W non vale, perché i carichi di tipo induttivo tendono a creare archi ed extratensioni di apertura.

Quindi niente motori: oppure *motorini*, genere macinacaffé, al massimo!

ELENCO DEI COMPONENTI

C1-C5 : cond. elettr. 100 µF - 16 V - yertic. Ø 10,2x13

cm 60 : cavetto rosso cm 50 : cavetto arancio cm 50 : cavetto giallo

cm 50 : cavetto verde cm 60 : cavetto nero

cm 60 : cavetto nero

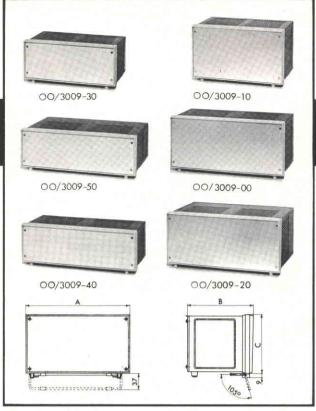
R1 : resistore a strato di carbone da 1,5 k Ω - $\pm 5\%$ - 0,33 W

R5 : resistore a strato di carbone da 4,7 k Ω - $\pm 5\%$ - 0,33 W R10 : resistore a strato di carbone da 5,6 k Ω - $\pm 5\%$ - 0,33 W

4 ; viti autofilettanti nich. T.C. tg. cacc. 2.2 x 5

1 : interruttore

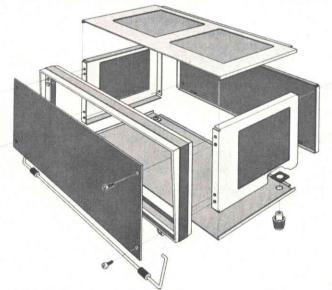
1 : relè


1 : confezione stagno

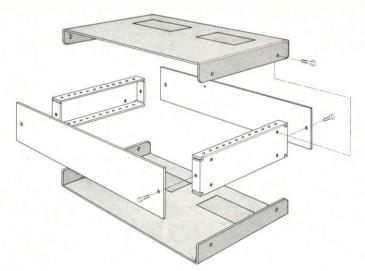
: contenitore

CS : circuito stampato

Tr1-Tr2: trans. BC107B (BC207B, BC237B)

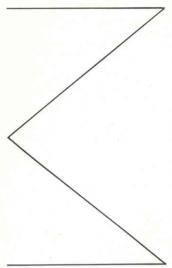

D1 : diodo 1N4001 (10D1)

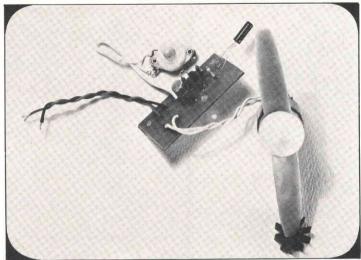
Dim	ensioni (± 1)	Order OBO	
Α	В	С	Codice G.B.C.	Prezzo
295 235 295	150 150 200	130 130 130	00/3009-00 00/3009-10 00/3009-20	
235 295 295	150 150 200	95 95 95	00/3009-30 00/3009-40 00/3009-50	

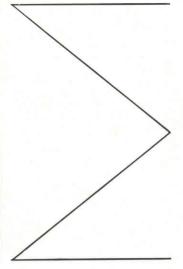


Contenitori per strumenti

Materiale: alluminio verniciato
Pannello frontale: alluminio
Cornice in materiale plastico antiurto
dotata di supporto per l'inclinazione
del contenitore


Contenitori per scatole di montaggio



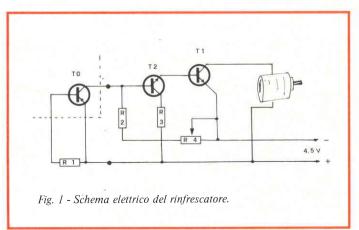

Materiale: alluminio anodizzato
Pannelli e fiancate: anodizzate colore alluminio
Coperchio e fondello: anodizzati colore bronzo
Gommini antivibranti

Tipo	Dimer	nsioni (± 1)	Codice	Prezzo
	Α	В	С	G.B.C.	Frezzo
Basso - Lungo	228,5	63,5	216	00/3008-00	
Basso - Corto	228,5	63,5	146	00/3008-10	
Alto - Lungo	203	89	216	00/3008-20	
Alto - Corto	203	89	146	00/3008-30	

a cura di Teddy

"IL RINFRESCATORE"

Sì, in effetti, il titolo richiama alla mente certi commercianti in generi ittici che si sforzano di far apparire come appena usciti dal mare dei paesi atlantici che, dalle nostre parti, fanno del turismo in frigorifero. A parte ogni considerazione su quanto "di antico" possa apparire sulla nostra tavola, viene qui descritto un semplice "marchincoso" che serve a diminuire la temperatura ambientale o di oggetti surriscaldati.


l "coso" funziona per convenzione, bella parola tecnica che sta lì per ingannare, forse i pesci di cui sopra, ma non l'astuto lettore che ha già compreso trattarsi di "fenomeno" fisico di trasporto del calore per mezzo di un fluido aeriforme posto in movimento" come diceva l'enciclopedia del mezzo dog inglese; ovvero ventilazione.

Buttandola sul serio, come si può notare dalle foto, si tratta di un piccolo ventilatore che entra automaticamente in azione non appena si supera una certa temperatura in prossimità di un elemento "sonda" o termometro; ma vediamo lo schema semplicissimo che consiste di appena tre transistori e poche resistenze, ed il loro funzionamento.

TO che è la sonda rivelatrice è un transistore al germanio; come è noto, detto materiale semiconduttore non ha un comportamento stabile nei riguardi del calore. Con l'aumentare della temperatura la corrente Iceo tende spontaneamente ad aumentare per "generazione termica".

I due successivi transistori sono invece al silicio ed hanno il compito di: T2 pilotare T1 e quest'ultimo il motore.

E chiaro che Tl è posto in conduzione ed il motore si avvia, non appena viene iniettata nella base di T2 una corrente sufficiente alla sua corretta polarizzazione con conseguente corrente di emettitore e pilotaggio di T1.

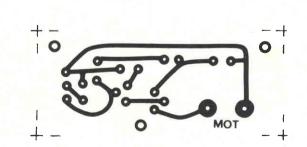
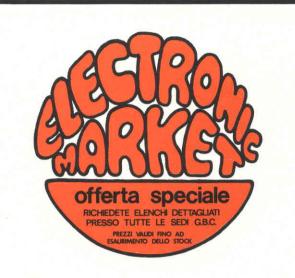



Fig. 2 - Basetta a circuito stampato vista dal lato rame in grandezza naturale.

SEMICONDUTTORI BC231 YY/8510/25 L. 140 BB105G YY/2913-08 **BC177** YY/2933-00 L. 150 YY/8510/26 130 BC309 YY/2940-72 L. 70 **BF457** YY/8512-70 200 **BD438** YY/3018-34 L. 400 **BF458** YY/8512-72 200 **BF362** YY/3083-90 L. 400 BF459 YY/8512-74 200 **BF363** YY/3083-91 L. 410 1N1186A YY/8900-02 270 2N697 YY/4481-00 L. 160 1N1186AR YY/8900-04 270 2N5128 YY/5078-04 L. 110 1N1188A YY/8900-06 420 2N5130 YY/5078-08 L. 120 1N1188AR YY/8900-07 420 **BA128** YY/6209-00 30 1N1190A VV/8900-09 560 **BA130** YY/6215-00 30 1N1190AR YY/8900-10 560 BAY71 YY/6221-00 L. 30 1N3766A YY/8900-50 660 L. 200 **BFR18** YY/6400-78 1N3768A VV/8900-53 800 YY/8900-54 800 BSX27 YY/6569-00 L. 200 1N3768AR YY/6766-00 YY/7494-00 70 L005T1 L. 870 **BB103** YY/6399-08 60 BF292B L036T1 YY/6766-05 L. 870 YY/2508-00 200 YY/6766-10 **AC181K** L037T1 L. 870 F.C. 70 YY/6797-00 V435 **SFT377** L. 140 YY/6923-00 30 2N2484 F.C. 130 NTO2 F.C. 40 BC264 2N2904A YY/6924-33 L. 130 1N542 F.C. 30 BC212 YY/7556-16 90 400 YY/6786-05 290 YY/7985-00 TCA600 **TAA151** YY/0105-00 L. 250 YY/8154-00 AF106 AC117/175 L. 330 BC239 YY/8423-02 **BC270** YY/0249-00 70 70 YY/2563-99 90 **BC 307** YY/8424-00 70 SFT353 BC308 YY/8424-01 L. BC184 YY/8510-10 L.

VALVOLE

AZ1	VL/0039-03		5V6GT	VL/4936-04	L. 150
AZ11	VL/0048-03		5Y4GT	VL/4966-04	L. 120
AZ12	VL/0051-03	L. 140	6AU5GT	VL/5179-07	L. 120
DAF96	VL/0096-02		6AV5	VL/5200-07	L. 150
DC96	VL/0105-01	L. 140	6AX5GT	VL/5224-04	L. 170
DF651	VL/0177-03		6BF6	VL/5296-07	L. 120
DK92	VL/0195-01	L. 140	6CE5	VL/5521-07	L. 120
EBC81	VL/0423-02	L. 140	6DA4A	VL/5647-07	L. 150
EBF83	VL/0453-05		6DT5	VL/5734-07	L. 150
ECC81	VL/0528-02		6F40	VL/5893-06	L. 120
ECC88	VL/0546-02	L. 180	6FD5	VL/5905-00	L. 150
ECH42	VL/0639-05	L. 270	6FS5	VL/5947-07	L. 120
EF94	VL/0750-02	L. 140	6K11	VL/6298-07	L. 100
EY51	VL/0966-05		6SQ7GT	VL/6538-02	L. 220
GZ32	VL/1041-02		9AK8	VL/6979-08	L. 120
HBC91	VL/1056-02		9T8	VL/7030-08	L. 120
PL82	VL/1218-02		12AJ6	VL/7207-07	L. 100
PM84	VL/1302-01	L. 150	12AT?	VL/7231-07	L. 220
PY80	VL/1311-01	L. 100	12AU6	VL/7240-02	L. 180
UAF42	VL/1467-05		12BE6	VL/7303-02	L. 220
UBF89	VL/1488-05			VL/7333-07	L. 120
UCL11	VL/1521-00	L. 100	12BZ7	VL/7363-07	L. 160
1AH4	VL/4087-07	L. 100	13CL6	VL/7698-99	L. 100
1LH4	VL/4162-07	L. 120	17EM5	VL/7911-99	L. 220
154	VL/4243-07	L. 90	19AQ5	VL/8025-04	L. 180
3AT2	VL/4426-07	L. 90	19BK7A	VL/8037-08	L. 100
3BE6	VL/4456-07	L. 90	19FD5	VL/8058-99	L. 100
3CF6	VL/4492-00	L. 100	19X8	VL/8094-07	L. 100
5AF4A	VL/4726-99	L. 100	35C5	VL/8331-04	L. 120
5AV8	VL/4756-07	L. 100	50C5	VL/8445-04	L. 150
5BR8	VL/4783-07	L. 100	5719	VL/8875-07	L. 120
5GH8	VL/4834-07	L. 100			

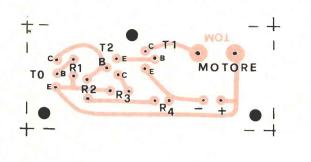


Fig. 3 - Disposizione dei componenti sulla basetta a circuito stampato.

Detta corrente di emettitore è proprio la Ice di TO; con R4 si trova il punto tale che T2 entri in conduzione ad una prefissata corrente, e di conseguenza, temperatura.

R1 è necessario perché la corrente di fuga nei transistori al germanio è in genere piuttosto elevata ma la si può attenuare con una adatta polarizzazione di base.

Con i valori assegnati ai resistori, il motore entra in funzione per temperature a partire da 40 ÷ 60 °C in su, e resta in azione finché la tempeatura non venga riportata ad un livello più basso.

È evidente che questo apparato è comodo per raffreddare alimentatori a transistori, piccoli lineari per CB, e comunque tutti quei piccoli circuiti in genere soggetti a grossi sbalzi di temperatura dannosi ai componenti elettronici.

Il montaggio realizzato su circuito stampato non presenta problemi; per le sue ridotte misure lo si può inserire negli apparati che si vogliano proteggere; R4, oltre che del tipo delle foto, può essere miniatura e montato direttamente sul c.s.

Per TO vanno bene gran parte dei transistori al germanio, anche quelli di recupero o surplus; volendo, può essere sostituito con una "sonda" diversa; una resistenza a coefficiente negativo, o quattro diodi al germanio posti in serie (con il catodo rivolto verso T2). Questi diversi tipi di sonda andranno però collegati ai punti dello schema segnati con un punto.

Il motore, con ventola, che è a bassa tensione $1.5 \div 5$ V può essere ricavato da uno di quei ventilatorini portatili facilmente reperibili d'estate nei grandi magazzini.

Una sola è la raccomandazione: attenzione alla polarità con cui si collega il motore, altrimenti l'aria invece di essere spinta innanzi verso la zona da rinfrescare, rinfresca il motore!!

ELENCO DEI COMPONENTI

TO: transistore al germanio (qualsiasi tipo)

T1: transistore BC239

T2: transistore 2N 1711

R1: resistore 10 kΩ

R2: resistore 4700 Ω

R3: resistore 470 Ω

R4: trimmer da 0,5 MΩ

1: aletta di raffreddamento per T1 tipo GBC GC/1460-00

V.F.O. e Preamplificatori per la Citizen Band

di Luigi Saraceni

ono pochi i C.B. che conoscono l'utilità di un preamplificatore di Radio Frequenza. Altri, come ho potuto constatare di persona, non sanno ancora di che cosa si tratti esattamente. Il mio compito non è quello di spiegare il circuito elettrico che lo compone, anche perché non vi voglio annoiare con lezioni teoriche che per molti di voi potrebbero risultare superflue, ma mi limiterò, visto che si tratta di un apparecchio che si vende già costruito, a descriverne

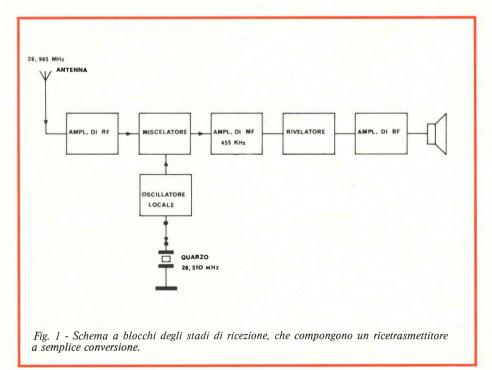
La stessa cosa farò per il V.F.O. (Variable Frequency Oscillator), Oscillatore

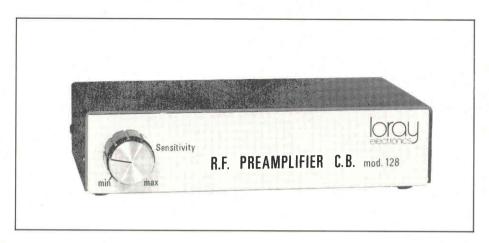
a Frequenza Variabile.

Ouesti che vi ho elencati sono accessori oramai indispensabili per qualsiasi stazione CB che si rispetti. La tecnologia in questo particolare settore ha effettuato passi da gigante negli ultimi anni, ed è in grado di offrire apparecchiature atte a migliorare la resa di una qualsiasi stazione CB, anche la più modesta.

Il costo dei predetti accessori è contenuto, quindi alla portata di tutti. Prima di passare alla descrizione delle apparecchiature è bene fare una premessa. Molti di voi sanno che esistono due categorie ben distinte di ricetrasmettitori per CB, che si distinguono oltre che per il numero dei canali di cui dispongono, principalmente per il sistema di conversione dei segnali.

Il primo tipo è il cosidetto a semplice conversione che per ragioni di economia non dispone quasi mai più dei sei canali. Infatti questi tipi di apparati per ogni canale debbono disporre di due quarzi; uno di trasmissione e uno di ricezione, per un totale di dodici quarzi. In questo caso un apparato con ventitre canali dovrebbe disporre di quarantasei quarzi.


Spiegata quindi l'antieconomicità di un apparato con semplice conversione. Vi posso anticipare che questo problema è stato risolto mediante la sintesi. Fermiamoci ancora per un attimo al nostro semplice apparato a conversione. Come potete vedere nello schema a blocchi della figura 1 che riguarda i vari stadi di ricezione, il segnale proveniente dall'antenna entra nel primo stadio preamplificatore di radio frequenza. Il segnale che entra in antenna è emesso da un ricevitore CB, che sta trasmettendo sul canale uno, che corrisponde alla frequenza di 26.965 MHz. Il segnale, una volta preamplificato, passa allo stadio successivo; lo stadio miscelatore- convertitore di frequenza.


Come vedete dallo schema a blocchi, l'oscillatore locale oscilla sulla frequenza

di 26,510 MHz.

Quindi, la frequenza del segnale in ingresso 26,965, meno la frequenza del segnale dell'oscillatore locale 26,510, da la frequenza corrispondente al valore della media frequenza 455 kHz. Questo, come molti di voi sapranno, è il principio del-

la supereterodina e bisogna notare che i segnali ottenuti sono due: uno di 455 kHz, l'altro di 53,475 MHz. Siccome lo stadio successivo come abbiamo già visto prima è accordato sulla frequenza di 455 kHz, passerà solo quest'ultima frequenza. Cioé allo stadio successivo passerà soltanto la differenza algebrica dei due segnali; quello che proviene dall'antenna meno quello generato dall'oscillatore locale. Occupiamoci ora dello stadio di trasmissione. Nello schema a blocchi della figura 2, vediamo sulla sinistra l'oscillatore locale TX. È pilotato da un quarzo avente come frequenza, la frequenza di trasmissione desiderata, che nel nostro caso è sempre quella corrispondente al canale uno, di 26,965 MHz. Questa frequenza viene amplificata dagli stadi successivi sino ad ottenere la potenza desiderata.

Preamplificatore di R.F. "Loray" modello 128.

Preciso un'altra cosa per i non addetti ai lavori; molte volte ho assistito a discussioni tra di voi per quanto riguarda la potenza di un ricetrasmettitore. Visto che siamo in argomento, ritengo sia que-

che nel nostro caso è di 2.5 W R.F.

la potenza di un ricetrasmettitore. Visto che siamo in argomento, ritengo sia questa la sede migliore per chiarire il concetto una volta per tutte. Nelle caratteristiche di un ricetrasmettitore si legge di sovente: Potenza input 5 W, oppure potenza ingresso stadio finale 5 W, oppure ancora, consumo dello stadio finale 5 W.

È sempre la stessa cosa, comunque sia detta, cioé il consumo dello stadio finale è di 5 W. In altri casi troviamo; Potenza output 2,5 W, oppure potenza uscita R.F. 2,5 W.

Non voglio sindacare quanto scrivono le ditte costruttrici di ricetrasmettitori nelle caratteristiche tecniche inerenti alla parte TX di un baracchino, ma reputo che la più sincera sia la seconda.

Infatti ritengo che riportando il consumo dello stadio finale non abbiamo l'opportunità di stabilire le perdite che vengono prodotte, pertanto non abbiamo mai l'idea della potenza effettiva.

Chiusa questa breve parentesi, passiamo ora al secondo tipo di ricetrasmistitore; il cosidetto ventitre canali sintetizzato. Nello schema a blocchi della figura 3 potete vedere raffigurati tutti gli stadi che compongono un apparato di questo tipo. Prendiamo in esame la prima parte, (la parte superiore) dello schema del ricevitore. Si tratta sempre di un supereterodina, ma in questo caso a doppia conversione (cioé con due cambiamenti di frequenza). I vantaggi della doppia conversione penso li conosciate tutti, ma voglio ricordarvene uno, il più importante: la possibilità di evitare che segnali di forte intensità di frequenze adiacenti a quella su cui siano sintonizzati possano essere amplificati dagli stadi successivi ed interferire con il segnale desiderato. Pertanto, usufruendo della doppia conversione, tale fenomeno viene quasi totalmente soppresso.

Torniamo ora ad esaminare il nostro schema del ricevitore, il segnale proveniente dall'antenna, sempre corrispondente al canale uno, di 26,965 MHz, viene amplificato dallo stadio preamplificatore di radiofrequenza ed in seguito inviato al 1º stadio miscelatore-convertitore di frequenza. Questo stadio dispone di un oscillatore locale sulla frequenza

di 37,600 MHz; in questo caso otteniamo la frequenza della prima media frequenza di 10,635 MHz, effettuando la differenza algebrica dei due segnali; cioé: 37,600 MHz meno 26,965 MHz otteniamo 10,635 MHz. Il segnale così ottenuto passa allo stadio successivo, al secondo stadio miscelatore-convertitore.

Anche lui ha la funzione di miscelare e di convertire. Perciò, 10,635 MHz meno la frequenza del secondo oscillatore locale che in questo caso risulta essere di 10,180 MHz otteniamo il valore della seconda media frequenza 455 kHz.

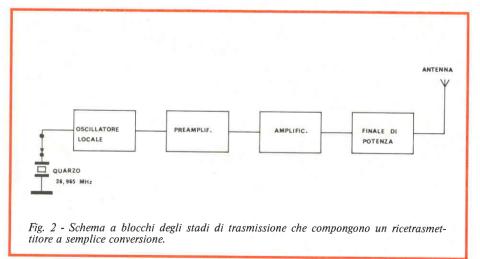
Dopo di che il segnale, come nel caso precedente, viene amplificato, rivelato, cioé trasformato in frequenza audio, nuovamente amplificato sino ad ottenere un segnale audio (B.F.) di due o tre W.

Cambiando canale ovviamente la frequenza cambia ma il valore della seconda media frequenza rimane invariato, varia soltanto il valore della prima M.F. fra 10,595 MHz e 10,635 MHz.

Nella tabella potete vedere come per sintesi si possono ottenere le diverse frequenze dei ventitre canali con un numero limitato di quarzi. Sempre riferendomi alla tabella delle sintesi, osserviamo ora la sezione TX di un ricetrasmettitore sintetizzato.

Vediamo quindi ancora la figura 3, la sezione trasmittente.

L'oscillatore "TX" genera un segnale di 10,635 MHz che viene in seguito inviato nel miscelatore a cui anche il segnale generato dall'oscillatore Master di 37,600 MHz, la differenza algebrica di questi due segnali ci dà la frequenza di 26,965 MHz che corrisponde a quella del canale uno, su cui eravamo sintonizzati. Vista anche questa seconda parte che compone un ricetrasmettitore di tipo sintetizzato è doverosa una spiegazione che non ho potuto fare prima per non generare confusione.


Un apparato di questo tipo dispone di tre oscillatori locali; uno RX, uno TX ed un Master (Principale). Nello schema a blocchi completo lo potete vedere chiaramente. Pertanto potete constatare che con quattordici quarzi si ottengono, come ho già detto sopra, ventitre canali risparmiando ben trentadue quarzi, riuscendo così a contenere il costo dello apparato in limiti ragionevoli.

Dopo queste precisazioni che torno a ripetere sono elementari, passo alla prima delle novità che ho anticipato nel titolo: "L'Amplificatore di Radiofrequenza".

Si tratta di un preamplificatore di radiofrequenza che può essere collegato a qualsiasi ricetrasmettitore operante nella Banda Cittadina con frequenze comprese fra 26,965 e 27,500 MHz.

E un apparecchietto di facile installazione e di uso semplicissimo.

Come si vede nella foto, il frontale dispone di una manopola per regolare il guadagno del preamplificatore da zero al massimo di 24 dB. Succede sovente

TABELLA DELLE SINTESI Frequenze dei quarzi dei vari oscillatori locali. Oscillatore Master 37,600 MHz 37,650 MHz 37,700 MHz 37,750 Mhz 37,800 MHz 37.850 MHz Oscillatore di ricezione (RX) 10,180 MHz 10,170 MHz 10,160 MHz 10.140 MHz Oscillatore di trasmissione (TX) 10,635 MHz 10,625 MHz 10,615 Mhz 10.595 MHz

di trovarsi in un DX ed accorgersi che il nostro interlocutore ci senta bene, ma noi per diversi fattori non dipendenti dalla nostra apparecchiatura non lo si ascolti altrettanto bene. Oppure addirittura, come diciamo sovente noi nel nostro gergo, "arriva sul fondo". Questo è il momento di impiegare il preamplificatore che ci consente di aumentare l'amplificazione del nostro "baracchino" in ricezione.

Vediamo ora come si collega il "Loray" mod. 128 ad un ricetrasmettitore.

Sul retro vi sono due prese, ed un conduttore munito di due fili, uno rosso ed uno nero. Il cavo proveniente dall'antenna dovrà essere collegato alla presa con la dicitura "Antenna".

Il cavo munito di bocchettone proveniente dal ricetrasmettitore, dovrà essere collegato alla presa "Trasmitter". Effettuati questi collegamenti si può collegare l'alimentazione. Il "LORAY" mod. 128 deve essere alimentato a 12 Vcc e consuma soltanto 1 mA. Pertanto è sufficente collegarlo all'alimentatore stabilizzato che già alimenta il ricetrasmettitore. Oppure, nel caso non si disponga di alimentatore, è possibile alimentarlo, visto l'esiguo consumo di corrente, mediante una pila di batterie da 12 Vcc.

Unica precauzione da osservare è la polarità, al filo rosso si collega il polo positivo, al filo nero il polo negativo.

Il LOray mod. 128 è pronto per il suo impiego e se usato razionalmente può dare risultati eccellenti. Però non si può pretendere che amplifichi segnali che ar-

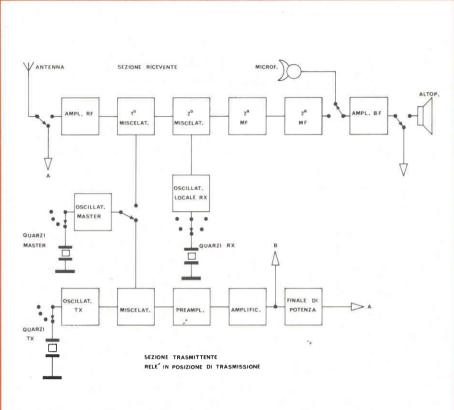


Fig. 3 - Schema a blocchi degli stadi di ricezione e trasmissione che compongono un ricetrasmettitore sintetizzato con ventitrè canali a doppia conversione.

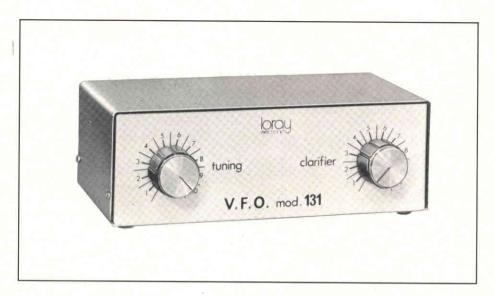
rivino a "Radio zero e Santiago zero".

Un altro particolare da non dimenticare è la potenza massima applicabile. Infatti questo preamplificatore dispone di un relè, che provvede alla commutazione del pannello preamplificatore dallo stato di ricezione allo stato di riposo, quando il ricetrasmettitore viene posto in trasmissione. Queste commutazioni avvengono automaticamente, pertanto la potenza massima applicabile è di 15 W. Non credo ci sia altro da dire del "Loray" mod. 128 e passerei ora a descrivervi i V.F.O.

La tecnologia moderna non lascia più nulla all'immaginazione e il V.F.O. risulta essere uno degli strumenti oramai indispensabili a qualsiasi CB. Procediamo con ordine. Prendiamo in esame il "Loray" mod. 131/38. Sulle caratteristiche tecniche date dal costruttore leggiamo: Oscillatore a frequenza variabile a diodi varicap, alimentazione 12 Vc.c., assorbimento 30 mA, frequenza di lavoro da 37,400 a 38,200 MHz circa. È possibile l'adattamento su tutti i ricetrasmettitori con i quarzi "Master" a 38 MHz.

Quindi, come avrete già intuito, è possibile l'impiego soltanto con ricetrasmettitori che ottengono le varie frequenze operative mediante "sintesi", cioé quella categoria di baracchini che ottengono le varie frequenze dei ventitre canali mediante sintesi.

Ora avrete capito perché all'inizio mi


sono soffermato in particolare a spiegare la sintesi dei quarzi.

Perciò, se mettiamo al posto di uno qualsiasi dei quarzi dell'oscillatore ·Master" il V.F.O., possiamo variare sia la frequenza di trasmissione che di ricezione entro un certo limite come potete vedere nella tabella delle sintesi. Ciò è consentito perché un solo oscillatore viene impiegato il Master tanto in ricezione quanto in trasmissione. Invece non è possibile l'impiego su ricetrasmettitori a semplice conversione perché, come abbiamo visto prima dispongono di due frequenze differenti per la ricezione e la trasmissione.

Applicando quindi un V.F.O. ad un baracchino normale che dispone all'origine di ventitre canali possiamo disporre di un numero indeterminato di canali.

Ora vediamo l'altro modello il "Loray" Mod. 131/11. Questo V.F.O. può essere impiegato sempre su ricetrasmettitori sintetizzati con ventitre canali, ma con lo oscillatore "Master" a 11 MHz. Anche in questo caso è sufficiente sfilare dallo zoccolo porta quarzi uno dei quarzi dell'oscillatore "Master" e collegare al suo posto il cavetto schermato che esce dal V.F.O.

La variazione di frequenza all'interno del V.F.O. avviene mediante diodi varicap. Questi tipi particolari di diodi hanno la proprietà di variare la capacità con il variare della tensione che gli viene ap-

Oscillatore a frequenza variabile "Loray" modello 131.

plicata. Pertanto come nel caso dei V.F.O. vengono accoppiati ad un circuito oscillatore dove hanno la proprietà di variarne la frequenza, al variare della tensione

che gli viene applicata, mediante un circuito alimentatore in corrente continua stabilizzata.

Quindi uno degli inconvenienti che po-

Sintesi dei quarzi per ottenere la frequenza di trasmissione

Frequenza operativa = Freq. dell'oscil. Master - Freq. dell'oscil. TX

Canale	Freq. oscil. Master	Freq. oscil. TX	Freq. operativa
1	37,600 MHz	10,635 MHz	26,965 MHz
2	37,600 MHz	10,625 MHz	26,975 MHz
3	37,600 MHz	10,615 MHz	26,985 MHz
4	37,600 MHz	10,595 MHz	27,005 MHz
5	37,650 MHz	10,635 MHz	27,015 MHz
6	37,650 MHz	10,625 MHz	27,025 MHz
7	37,650 MHz	10,615 MHz	27,035 MHz
8	37,650 MHz	10,595 MHz	27,055 MHz
9	37,700 MHz	10,635 MHz	27,065 MHz
10	37,700 MHz	10,625 MHz	27,075 MHz
11	37,700 MHz	10,615 MHz	27,085 MHz
12	37,700 MHz	10,595 MHz	27,105 MHz
13	37,750 MHz	10,635 MHz	27,115 MHz
14	37,750 MHz	10,625 Mhz	27,125 MHz
15	37,750 MHz	10,615 MHz	27,135 MHz
16	37,750 MHz	10,595 MHz	27,155 MHz
17	37,800 MHz	10,635 MHz	27,165 MHz
18	37,800 MHz	10,625 MHz	27,175 MHz
19	37,800 MHz	10,615 MHz	27,185 MHz
20	37,800 MHz	10,595 MHz	27,205 MHz
21	37,850 MHz	10,635 MHz	27,215 MHz
22	37,850 MHz	10,625 MHz	27,225 MHz
23	37,850 MHz	10,595 MHz	27,255 MHz

trebbero verificarsi in un impiego irrazionale è l'instabilità di frequenza. Quando ciò si può verificare? Per rispondere a questa domanda intendo come al solito, andare alle origini per meglio far comprendere il fenomeno.

Quando si acquista un alimentatore stabilizzato per il nostro ricetrasmettitore solitamente si trascurano diversi particolari.

Il primo in assoluto è la sicurezza. Partendo dal presupposto che l'alimentatore è una macchina elettrica, e come tutte le cose costruite dall'uomo è soggetta a rotture, non avete mai provato a pensare cosa accadrebbe se andasse in cortocircuito il trasformatore di alimentazione del vostro alimentatore?

Non è mai successo direte voi! Ma la probabilità esiste, solo che per nostra fortuna non abbiamo mai sentito dire che un CB è rimasto attaccato al suo baracchino per colpa dell'alimentatore. Secondo, meno importante della sicurezza, ma importante per il nostro scopo è la stabilità di tensione. Noi a volte non ci accorgiamo perché la caduta di un Volt agli effetti pratici al nostro baracchino non provoca alcun inconveniente.

Prendiamo in esame invece il caso in cui abbiamo collegato assieme al baracchino anche il V.F.O. Succederebbe l'inevitabile.

Ci troveremmo a ricevere su una frequenza, ed a trasmettere su un'altra. In questo caso l'alimentatore di cui disponiamo non è idoneo al nostro scopo. Come si spiega questo fenomeno?

Semplice, è sufficiente collegare un voltmetro in parallelo all'uscita dell'alimentatore e controllare la tensione. Prima con il baracchino in ricezione, poi in trasmissione. Se riscontrate differenze di tensione anche di pochi millivolt, ecco spiegato il fenomeno.

Infatti, come ho spiegato prima, una variazione di tensione provoca una variazione di capacità nei diodi varicap e di conseguenza una variazione di frequenza del V.F.O.

Come ovviare all'inconveniente? Acquistare un alimentatore più stabile. Visti gli inconvenienti che si possono verificare in un impiego irrazionale, vediamo ora come si collega all'atto pratico il "Loray" 131/38 ad un baracchino con il "Master" a 38 MHz.

Aprite il baracchino togliendo le fasce perimetrali, e avrete a portata di mano tutti i circuiti interni.

Cercate la quarziera che contiene i quarzi riguardanti l'oscillatore "Master". Non potete sbagliarvi, perché come abbiamo già visto nella tabella precedente riguarda la serie di quarzi da 37 MHz.

Togliete il quarzo da 37,600 MHz, che viene impiegato per ottenere le frequenze di trasmissione e ricezione dei canali uno, due, tre, quattro. una volta tolto il quarzo, colleghiamo i due fili del cavetto schermato del V.F.O.

Qui dobbiamo stare attenti, collegare lo schermo del cavetto schermato a massa dell'apparecchio, ed il centrale sul lato caldo della quarziera. A questo punto potete richiudere il baracchino.

Ruotando la manopola di sintonia del V.F.O. esplorerete le frequenze compre-

se fra:

26,765 e 27,565

quando siete sintonizzati sul canale 1 26,775 e 27,575

quando siete sintonizzati sul canale 2 26,785 e 27,585

quando siete sintonizzati sul canale 3 26,805 e 27,605

quando siete sintonizzati sul canale 4.

Come si ottengono queste frequenze? Semplice, prendiamo la tabella delle sintesi per ottenere la frequenza di trasmissione. Per i canali uno, due, tre, quattro, l'oscillatore Master impiega un quarzo da 37,600 MHz.

Il V.F.O. copre le frequenze compre-

se fra 37,400 MHz e 38,200.

Con delle semplici sottrazioni otteniamo le varie frequenze operative di trasmissione. Sempre riferendomi alla tabella di trasmissione vi faccio i vari esempi. Per il canale uno:

37,400 - 10,635 = 26,765 MHz 38,200 - 10,635 = 27,565 MHz

Per il canale due:

37,400 - 10,625 = 26,775 MHz

38,200 - 10,625 = 27,575 MHz

Per il canale tre:

37,400 - 10,615 = 26,785 MHz

38,200 - 10,615 = 27,585 MHz

Per il canale quattro:

37,400 - 10,595 = 26,805 MHz

38,200 - 10,595 = 27,605 MHz

L'escursione totale per ogni canale è di circa 800 kHz.

Tutto ciò tenendo in considerazione il V.F.O. con variabile tutto chiuso e tut-

to aperto.

La stessa cosa è possibile effettuarla con l'altro modello di V.F.O. con fondamentale 11 MHz. Anche in questo caso è sufficiente sostituire uno dei quarzi dell'oscillatore "Master" con il cavetto che esce dal V.F.O. A questo punto ritengo di avervi detto tutto, ma voglio

Alle edicole o in abbonamento e presso tutti i punti di vendita GBC

II 10-20-30 di ogni mese

Dai primi elementi.... alle applicazioni più moderne. Per chi vuole diventare tecnico e per chi lo è già.

E UN'OPERA CHE NON INVECCHIA!

Rinnovo periodico delle lezioni

E VERAMENTE QUALCOSA DI UTILE E DI PRATICO....

TELEVISIONE a COLORI

Corso solo per corrispondenza

Rende idonei al Servizio Assistenza e Riparazione

Chiedete, senza impegno, l'opuscolo che illustra in dettaglio i 2 corsi. Contiene i programmi, un modulo di iscrizione ed un tagliando per un abbonamento di prova. Scrivere chiaramente il proprio indirizzo, unendo Lit. 200 in francobolli.

ISTITUTO TECNICO di ELETTRONICA "G. MARCONI" A

Casella Postale 754 - 20100 Milano

aggiungere ancora un piccolo particolare, i prodotti "Loray" sono in vendita presso tutte le sedi della "G.B.C." italiana.

Sintesi dei quarzi per ottenere la frequenza della 2º Media Frequenza.

Freq. della 2° M.F. = Freq. oscil. Master - Freq. in arrivo - Freq. oscil. RX

ESEMPIO:

Siamo sintonizzati sul canale uno, che corrisponde alla freq. di 26,965 MHz. In questo caso il commutatore dei canali seleziona il quarzo da 37,600 MHz dell'oscillatore Master, ed il quarzo da 10,180 MHz dell'oscillatore RX.

Pertanto:

 $37,600 \,\mathrm{MHz} - 26.965 \,\mathrm{MHz} = 10.635 \,\mathrm{MHz}$ (Valore della 1° M.F.)

10,180 MHz - 10,635 MHz = 0,455 MHz= 455 kHz (Valore della 2° M.F.).

Canale	Freq. oscil. Master	Freq. segn. ing.	Freq. I ^o M.F.	Freq. osc. RX
1	37,600 MHz	26,965 MHz	10,635 MHz	10,180 MHz
2	37,600 MHz	26,975 MHz	10,625 MHz	10,170 MHz
3	37,600 MHz	26,985 MHz	10,615 MHz	10,160 MHz
4	37,600 MHz	27,005 MHz	10,595 MHz	10,140 MHz
5	37,650 MHz	27,015 MHz	10,635 MHz	10,180 MHz
6	37,650 MHz	27,025 MHz	10,625 MHz	10,170 MHz
7	37,650 MHz	27,035 MHz	10,615 MHz	10,160 MHz
8	37,650 MHz	27,055 MHz	10,595 MHz	10,140 MHz
9	37,700 MHz	27,065 MHz	10,635 MHz	10,180 MHz
10	37,700 MHz	27,075 MHz	10,625 MHz	10,170 MHz
11	37,700 MHz	27,085 MHz	10,615 MHz	10,160 MHz
12	37,700 MHz	27,105 MHz	10,595 MHz	10.140 MHz
13	37,750 MHz	27,115 MHz	10,635 MHz	10,180 MHz
14	37,750 MHz	27,125 MHz	10,625 MHz	10,170 MHz
15	37,750 MHz	27,135 MHz	10,615 MHz	10,160 MHz
16	37,750 MHz	27,155 MHz	10,595 MHz	10,140 MHz
17	37,800 MHz	27,165 MHz	10,635 MHz	10,180 MHz
18	37,800 MHz	27,175 MHz	10,625 MHz	10,170 MHz
19	37,800 MHz	27,185 MHz	10,615 MHz	10,160 MHz
20	37,800 MHz	27,205 MHz	10,595 MHz	10,140 MHz
21	37,850 MHz	27,215 MHz	10,635 MHz	10,180 MHz
22	37,850 MHz	27,225 MHz	10,625 MHz	10,170 MHz
23	37,850 MHz	27,255 MHz	10,595 MHz	10,140 MHz

FOR CAR

È un apparecchio di dimensioni

E un appareccho di dimensioni molto ridotte che consente non solo la protezione dell'abitacolo, ma anche del bagagliaio, del vano motore e degli accessori. L'intervento, all'aprirsi delle portiere, è opportunamente ritardato per consentire al proprietario la disattivazione dell'impianto. Gli accessori quali: radio, mangianastri e simili sono invece protetti dall'intervento rapido dell'all'arme che entra in funzione immediatamente al primo tentativo di furto, KC/3800-00

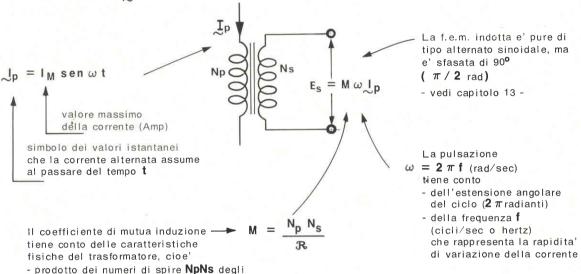
in vendita presso tutte le sedi G.B.C. a £ 16.000

PPUNTI DI ELE

: Grandezze fondamentali Sezione

Elettromagnetiche, Magnetiche, Elettrostatiche Capitolo Paragrafo: Elettromagnetismo in corrente alternata sinoidale

Argomento: F.e.m. nel circuito magnetico a due avvolgimenti (trasformatore)

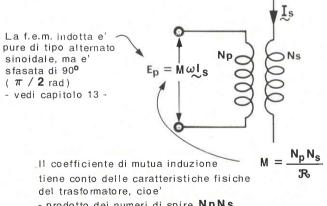

Codice Pagina 12.32

APRILE 1976

Oggetto: Si riprendono gli argomenti trattati in 12.28-1 e si adattano gli stessi concetti a correnti variabili sinoidalmente.

A) Primario induttore, secondario indotto

La corrente Ip che attraversa il primario di un trasformatore, varia in questo modo:


Il fenomeno è reversibile: la stessa corrente inserita nel secondario genera al primario la Nota: stessa f.e.m. (vedi caso B).

B) Primario indotto, secondario induttore

avvolgimenti primario e secondario

- riluttanza del circuito magnetico (in Asp/Wb)

La corrente is che attraversa il secondario di un trasformatore, varia in questo modo:

- prodotto dei numeri di spire NpNs degli avvolgimenti primario e secondario
- riluttanza del circuito magnetico (in Asp/Wb)

simbolo dei valori istantanei che la corrente alternata assume al passare del tempo t,

> La pulsazione $\omega = 2\pi f$ (rad/sec)

- dell'estensione angolare del ciclo (2 mradianti)
- della frequenza f (cicli/sec o hertz) che rappresenta la rapidita' di variazione della corrente.

Nota: Il fenomeno è reversibile: la stessa corrente inserita nel primario genera nel secondario la stessa f.e.m. (vedi caso A).

Sezione : Grandezze fondamentali

: Elettromagnetiche, Magnetiche, Elettrostatiche Capitolo

Paragrafo: Elettromagnetismo in corrente alternata sinoidale

Argomento: F.e.m. in un circuito magnetico ad un avvolgimento (induttore)

APPUNTI DI ELETTRONICA

APRILE 1976

Oggetto: Si riprendono gli argomenti in 12.28-2 e si adattano gli stessi concetti a correnti variabili

La corrente I che attraversa l'avvolgimento di un induttore, varia in questo modo:

sinoidalmente.

Il coefficiente di auto-induzione (induttanza) tiene conto delle caratteristiche fisiche dell'induttore,

- numero di spire ^N (al quadrato) dell'avvolgimento
- riluttanza del circuito magnetico (in Asp/Wb)

La f.e.m. indotta e' pure di tipo alternato sinoidale, ma e' sfasata di 90° $(\pi/2 \text{ rad})$

- vedi capitolo 13 -

La pulsazione

$$\omega = 2\pi f (rad/sec)$$

tiene conto

- dell'estensione angolare del ciclo (2 m radianti)
- della frequenza f (cicli/sec o hertz) che rappresenta la rapidita' di variazione della corrente.

Illustriamo ora il «meccanismo» elettromagnetico in corrente alternata che sovrintende alla formazione di f.e.m. auto-indotta, pure alternata.

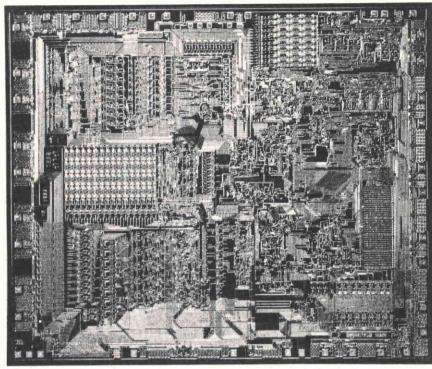
Sappiamo che una corrente alternata applicata all'avvolgimento dell'induttore di N spire autoinduce ai suoi capi una f.e.m. E

Questa f.e.m. è creata dal flusso alternato presente nel circuito magnetico dell'induttore.

valori istantanei del flusso che varia in questo modo:

$$\Phi = \Phi_{M} \text{ sen } \omega \text{ t}$$

$$\text{valore massimo del flusso (Wb)}$$


$$\Phi_{M} = \frac{\text{N I M}}{\text{R}}$$

$$\Phi = \frac{N}{\Re}$$
valori istantanei della f.m.m. alternata
riluttanza (in Asp/Wb)

La f.e.m. autoindotta $E = N \frac{\Delta \Phi}{\Delta t} = N \frac{N \Delta I}{\Re \Delta t} = \frac{N^2}{R} E_M \cos \omega t$ induttanza (henry) (vedi capitolo 13)

PHILIPS

Chip del microprocessor 2650

Philips prima in Europa nei Semiconduttori e Circuiti Integrati, amplia la sua ben nota gamma di componenti elettronici con i Circuiti Integrati della

signetics

una delle maggiori ditte americane produttrici di Circuiti integrati che entra a far parte del Gruppo Philips

La Philips Elcoma oltre ai Circuiti integrati produce una gamma completa di semiconduttori per impieghi civili e professionali. Per ulteriori informazioni rivolgersi a:

PHILIPS S.p.A. - Sez. Elcoma - Data Processing Piazza IV Novembre, 3 - 20124 MILANO E' quindi oggi disponibile in Italia attraverso la rete di vendita Philips una gamma completa di Circuiti integrati per tutte le applicazioni:

Circuiti Integrati digitali bipolari:

TTL-N, TTL-H, TTL-S, TTL-LS, ECL

Circuti Integrati digitali MOS:

serie Locmos 4000

Memorie bipolari:

RAM fino a 1024 bit ROM fino a 8192 bit PROM fino a 4096 bit

Memorie MOS:

RAM fino a 4096 bit ROM fino a 8192 bit

Microprocessor:

MOS N channel e bipolari

Shift Registers MOS:

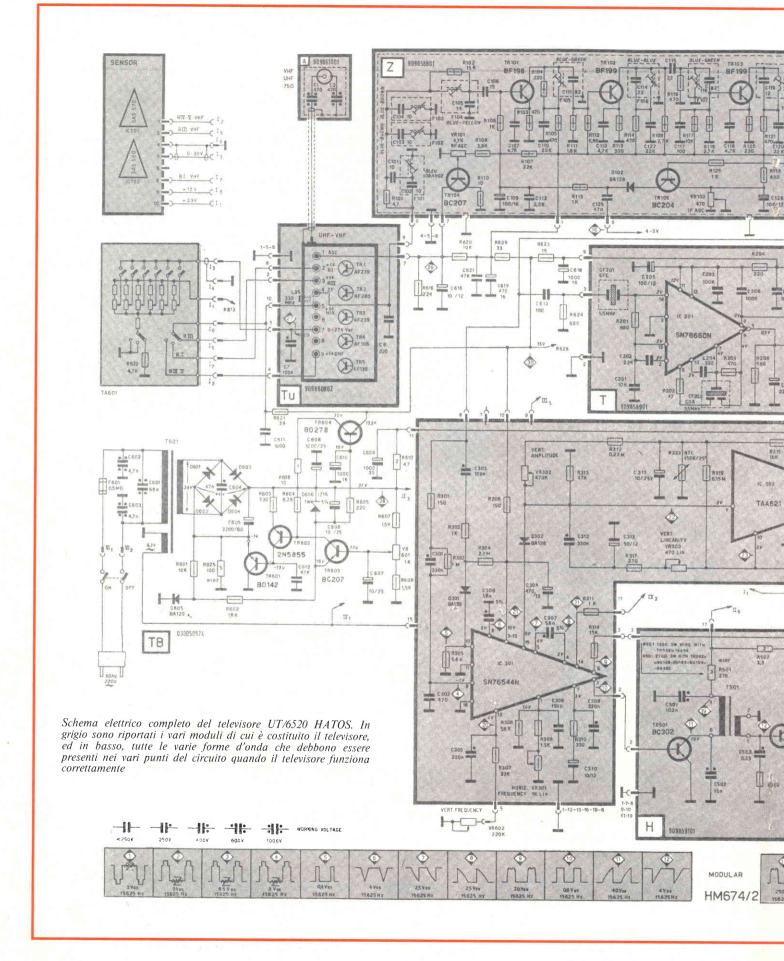
fino a 1024 bit

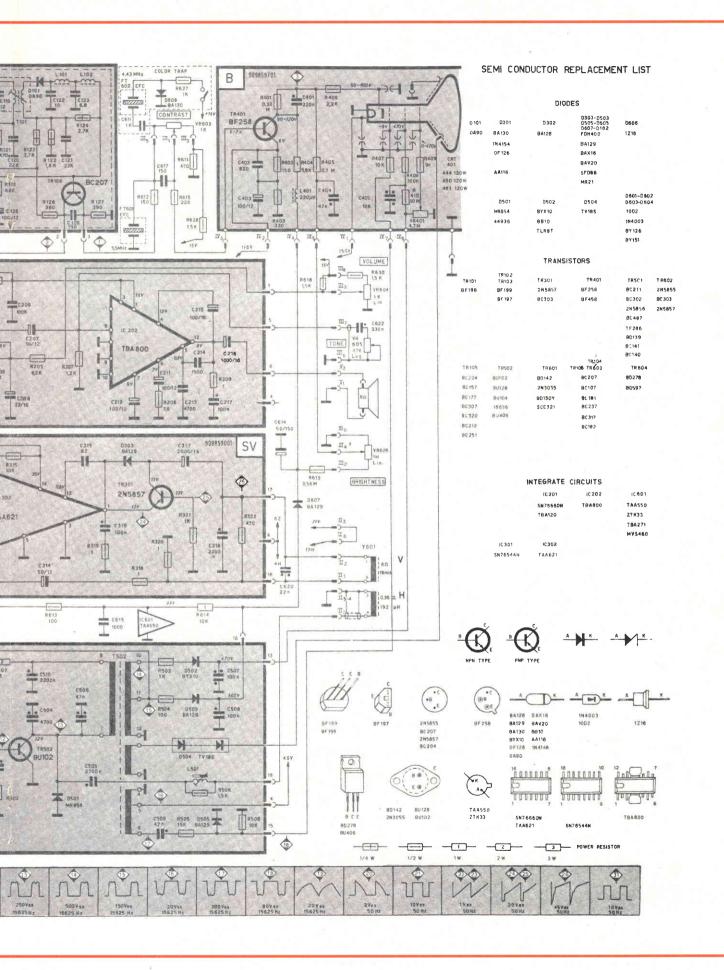
Circuiti Integrati lineari professionali:

Operazionali - Comparatori - Timers -Phase Locked Loops -

Regolatori di tensione

Circuiti Integrati lineari civili:


per TV a colori e bianco/nero per Radio - per Registratori per Audio - per organi elettronici


Transistori D-MOS:

 $f_T > 1 \, GHz$

Circuiti di interfaccia digitali e lineari

Circuiti Integrati a specifica militare

ANTIFURI AMERICANI LE VERE ASSURAZIONI CONTROLLA DEL LA DELLA DELL

Il suo funzionamento è basato sull'emissione di una barriera di raggi infrarossi modulati con una frequenza prestabilita, questo rende impossibile la neutralizzazione dell'antifurto e lo rende insensibile alle eventuali radiazioni esterne. Il funzionamento in ambienti dalla forma irregolare è possibile facendo seguire al raggio un tracciato spezzato con l'ausilio di specchi. L'antifurto GG5 è composto da un trasmettitore UK 952, un ricevitore UK 957 e dagli alimentatori UK 687 e UK 697.

Consente non solo la protezione dell'abitacolo, ma anche del bagagliaio, del vano motore e degli accessori. L'intervento, all'aprirsi delle portiere è opportunamente ritardato per consentire al proprietario la disattivazione dell'impianto.

È disponibile in kit UK 823 oppure già montato KC/3800-00

UK887W

AMMURIO AD ULIRASUOM

Funzionante con un fascio ultrasonico direttivo, questo antifurto di modernissima concezione è predisposto anche per il funzionamento come contapezzi o contapersone senza per questo dover variare il circuito o l'installazione, basterà azionare un commutatore. Le piccole dimensioni del trasmettitore semplificano il suo montaggio. L'antifurto GG3 è composto da 1 trasmettitore UK 814, 1 ricevitore UK 813 e da 1 alimentatore UK 818.

ALLARME ANTINGRIDIO E ANTIRURIO

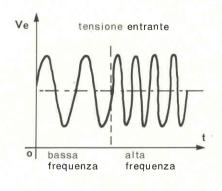
In combinazione con opportuni rilevatori e un avvisatore costituisce un ottimo sistema di allarme antifurto e antincendio. Il ritardo dell'intervento è regolabile. Questo dispositivo può essere disinserito solamente da chi è in possesso dell'apposita chiave. La sua prerogativa è quella di funzionare contemporaneamente sia come antifurto che come antincendio e di poter comandare due segnali diversi per riconoscere la causa dell'allarme. È disponibile in kit UK 887 oppure già montato UK 887 W.

Antifurto di alta sensibilità, reagisce a qualsiasi cosa si avvicini ai suoi sensori entro i limiti che sono stati prefissati durante le operazioni di messo a punto. Tramite un commutatore può essere variata

la durata dell'allarme da momentanea a persistente.

UK85

Questo antifurto emette un fascio tridimensionale di onde ultrasonore che saturando il locale nel quale è installato formano una barriera praticamente invalicabile. Un dispositivo di ritardo permette l'azionamento dell'antifurto senza far scattare l'allarme È disponibile in kit UK 815 oppure già montato UK 815 W.

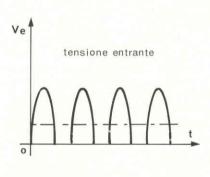


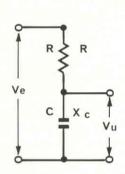

Paragrafo : Circuiti costituiti da due elementi lineari in serie Argomento: Circuito RC (resistore-condensatore). Generalità Codice Pagina
31.15 1

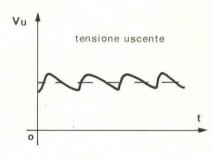
Sperimentare

APRILE 1976

Schema illustrativo per tensione entrante alternata di varia frequenza e polarizzata

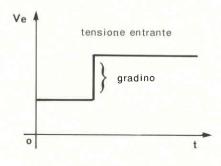


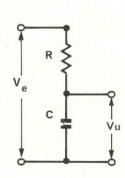


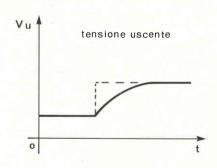

la bassa frequenza e' tanto meno attenuata quanto piu' bassa e' la frequenza

Impiego

a) Livellatore di ondulazioni eventualmente presenti nella corrente continua.






- b) Trasduttore preferenziale per le basse frequenze Attenzione: uscita polarizzata (vedi schema illustrativo)
- c) Circuito sfasatore
 La tensione uscente è sfasata rispetto alla tensione entrante(vedi pag. 3)
- d) Circuito ritardatore

Una eventuale variazione della tensione entrante produce una variazione ritardata della tensione

L'entità del ritardo dipende dal prodotto RC (in ohm e in farad) = costante di tempo (in secondi).

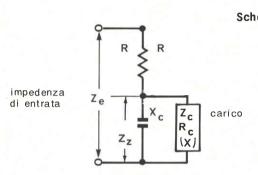
Fonti di informazione

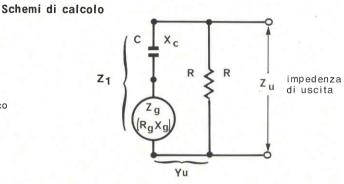
APRILE 1976

<u>APPUNTI DI ELET</u>

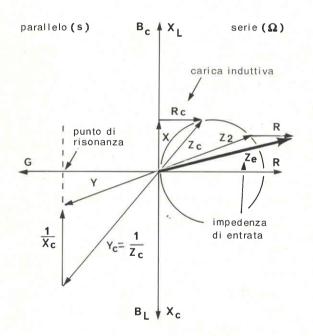
: Circuiti elementari Sezione

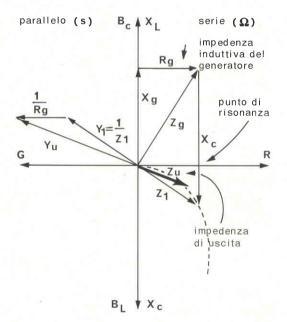
: Trasduttori passivi Capitolo


Paragrafo: Circuiti costituiti da due elementi lineari in serie


Argomento: Circuito CR. Operazioni in corrente alternata. Caso generale

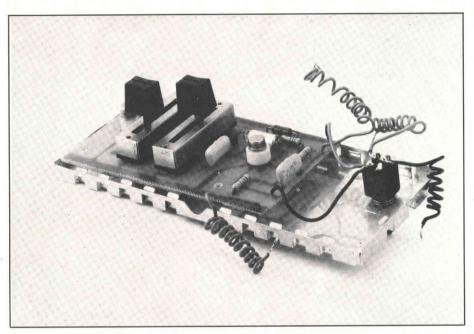
Si considera l'influenza dell'impedenza del generatore (Zg) e del carico (Zc) - vedi paragrafi 13.7. 13.8, 13.9)


IMPEDENZA DI ENTRATA


IMPEDENZA DI USCITA

Modelli di calcolo grafico

Osservazioni


La presenza del carico influenza notevolmente il valore di Ze, ed in particolare, se esso ha una componente induttiva, il circuito può entra re in risonanza con un opportuno valore di C.

Se il carico invece presenta una reattanza capacitiva, il circuito non potrà mai entrare in risonanza con il carico stesso.

La presenza del generatore influenza notevolmente il valore di Zu.

In particolare, se esso ha una componente induttiva, il circuito può entrare in risonanza con un opportuno valore di C.

Se il generatore invece presenta una reattanza capacitiva, il circuito non potrà mai entrare in risonanza con il generatore stesso.

UNA SCATOLA PIENA DI VENTO

Questo apparecchio, pur essendo piuttosto semplice, genera tutta una gamma di segnali audio... "meteorologici", che vanno dalla pioggerellina di marzo all'uragano; dal venticello che gioca tra le fronde sino alla tempesta che spazza le lande delle grandi solitudini evocando i racconti di Jack London e di un certo Tolstoj. Si tratta quindi della... "macchina della malinconia"? Evidentemente no; piuttosto di un sussidio per sonorizzare documentari, effettuare suggestivi missaggi sulla base di musiche drammatiche, e occorrendo, di un dispositivo che può creare l'ambiance di una notte di pioggia; quella con lo sgocciolio interminabile che concilia tanto bene il sonno.

andora mi interpellò ex abrupto il professore ciccione incombendo con la sua figura spropositata dall'alto della cattedra.

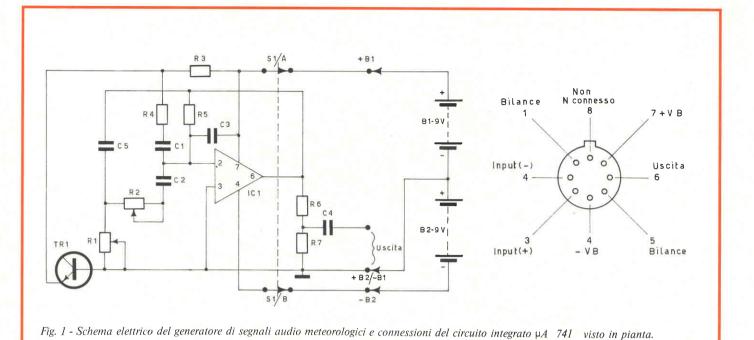
"Pandora" disse ancora minacciosamente, battendo l'indice sul registro; "mi dica chi era".

Cercai di confondermi con lo sciame di formiche che cir-

Cercai di confondermi con lo sciame di formiche che circolavano liberamente sull'impiancito, ma non riuscendovi farfugliai: "mi sembra quella del Vaso, no?"

"Quale vaso; quale vaso mi va raccontando!" Ribattè il Nume. "Sia serio! Pandora, di chi era sposa? Fatti, venga ai fatti; le dice nulla Esiodo? ed Epimeteo?" Si udì un violento rumore di nacchere, ma nessuno danzava il Flamenco; erano le mie ginocchia, ed i menischi in particolare che tremavano un po' fortino. Due classi più distanti qualcuno gridò: "Olé, olé baila baila!"

Poiché Epimeteo non mi diceva proprio nulla, accidenti, no, cercai una via di scampo: "Pandora - mi sembra - era quella che produceva tutti quei venti"...


Dal fondo della classe giunse un rumore scurrile che esprimeva il parere di un noto ripetentone tremendo, sulla natura e la qualità dei "venti" generati da Pandora.

Il professore aveva assunto un'aria beluina. Occorreva bluffare.

"Pandora" azzardai trattenendo il fiato "era bellissima!" In verità speculavo sul fatto che secondo un concetto piuttosto nazista ante litteram, tutti gli dei, i loro parenti ed affini - tolte le debite eccezioni - erano tutti belli, tremendamente ariani, muniti di lineamenti purissimi.

Solo, non sapevo se il destino mi stesse tendendo una trappola; che Pandora fosse stata un incrocio tra una manta ed una jena perché ad Evemero (primo tra i teorici ed i censori) quel giorno era venuta la mania del dispetto?

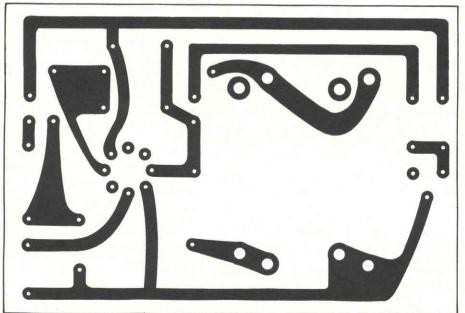
Mi andò bene. "Bravo" disse il professore ciccione e sadico, noto anche come Göering," era infatti giovanetta seducente e soavissima plasmata da Vulcano su ordine di Giove; era questo che voleva dire lei, eh?" Infatuato, tracciava dei segni

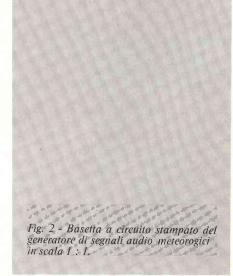
nell'aria che forse volevano indicare le fattezze di Pandora. "Si, si, si" confermai precipitosamente, poi con vigliaccheria aggiunsi "eh, il mito di questa eroina mi ha sempre tanto affascinato, ma tanto..."

«Göering» stava ancora sognando la Teogonia mi congedò con un gesto secco: "vada a posto!"

Guadagnai così un incredibile, insperato "sei" che rammento non appena qualcuno parla del famoso recipiente dal quale, sibilando come un tornado, uscirono tutti i guai dell'umanità, lasciando solo un pizzico di speranza.

Comunque, chi ne parla, non rammenta l'effetto più profondo teorizzato, ma solo il vortice; cosicchè è quasi... "obbligatorio" far riferimento alla creatura di Giove concepita per far dispetto a Prometeo, quando si accenna ad un vento tremendo; un vento che sembra quasi un *quaranto*, come dice un mio amico vagamente suonato.


Bene, in questo articolo, allora, vi propongo una specie


di vaso di Pandora elettronico; una scatoletta munita di due controlli; manovrandoli, il contenitore, metaforicamente "si scoperchia" e ne esce vento, tramontana, pioggia a raffiche, pioggerella, grandine. Non in concreto, ovviamente, ma i relativi rumori assolutamente realistici.

A cosa serve un apparecchio del genere? Occorre dirlo? Ha moltissime applicazioni. Per esempio, molti dormono molto meglio e si addormentano prima, udendo il rumore delle gocce che cadono nelle stagioni "intermedie": primavera e autunno. Non a caso è stato diffuso il proverbio "Aprile, dolce dormire!".

Se gli effetti sono "caricati" al massimo, la pioggia scroscia e flagella, il vento ulula minacciosamente o sibila a raffiche; ecco quindi ciò che serve per commentare adeguatamente una commedia o altro spettacolo teatrale, un documentario; oppure anche per creare musica sperimentale.

Ad esempio, missando il "Notturno sul Monte Calvo" con

questi effetti, si ottiene un risultato davvero emozionante: lo dico per prova fatta. Il generatore serve anche per spaventare gli uccelli che rovinano i semenzai; i volatili scappano velocissimi udendo il minaccioso ululato del vento e sembrano chiedersi "Porcaccio mondo, da che parte tira sto ventaccio che non si sente? Mah, frattanto meglio squagliarsi!"

Devo proprio proseguire? No, non lo credo necessario; vediamo anzi il circuito elettrico dell'apparecchio. Figura 1.

In pratica, questo è un "generatore di rumore rosa" (Pink generator, secondo gli americani) ovvero un generatore di rumore bianco, che invece di offrire una larghissima banda di impulsi, ha determinate fasce timbriche sottoposte ad esaltazione, ed altre soppresse.

Come tutti i moderni "White noise generator" anche questo impiega come sorgente di rumore composto la giunzione emettitore-base di un transistore al Silicio che lavora inversa per

la polarità: TR1 nel nostro schema.

Il segnale "soffiante" tramite R4 e C1 giunge all'ingresso" "dell'IC operazionale µA 741 (IC1) che ha l'altro (il "+") collegato al ritorno generale di massa.

Questo amplificatore, tramite R5 - R6, è collocato in un

punto di lavoro in cui dà un guadagno di circa 80 dB!

L'uscita dell'IC, tramite una rete di reazione formata da C5, R1, R2,C2 e C3 è retrocessa al piedino 2; in tal modo si ottiene dei timbri che interessano per formare i suoni desiderati. I potenziometri R1 - R2 hanno queste funzioni: se il primo è portato al massimo del valore, e il secondo al minimo, si ode solamente un leggerissimo fruscio, che è in pratica il rumore bianco pressoché non "corretto". Chi ascolta spesso interpreta questo suono come una lenta pioggia monotona. Lasciando R1 nella stessa posizione, e manovrando R2, la "pioggia" aumenta di intensità facendosi intensa e battente perché il rumore diviene "rosa", ovvero è filtrato con l'esaltazione dei transitori più ampi nella banda adiacente all'ultrasuono.

Se ora si regola R1, al forte rumore scrosciante si aggiunge un forte sibilo che dà la netta impressione di un vento che spazzi il temporale. Riducendo successivamente R1, entra in gioco una certa reazione acustica positiva che causa un "ululio" sovrapposto ai fenomeni precedenti. Di qui l'impressione di una vera e propria notte di tempesta, del genere di quelle care a Poe (per esempio, l'inizio della "Casa degli Usher" ed altri racconti). Con una successiva esaltazione del "controllo del vento" si ode una ambientazione che fortunatamente in Italia raramente si verifica; ovvero sembra di assistere ad una tempesta nordica, genere Tolstoj, Finžgar, o Frans Sillanpä. Il vento ruggisce, miagola e vibra, mentre la pioggia la si ode a raffiche.

Questo effetto... apocalittico, è dato dalla contemporanea esaltazione, con il massimo guadagno, di tutti i segnali "bianchi" reazionati tramite l'IC e limitati nella parte più bassa

dello spettro.

Sebbene, in sede di progetto si volesse ottenere il solo controllo del "vento" e della "pioggia", in pratica i due potenziometri sono piuttosto interdipendenti, il che non è poi un male, considerando la possibilità di avere degli "incroci" che all'ascolto sono estremamente veri, tanto da sconcertare chi ascolta, ed è molto più propenso a credere in una re-

gistrazione, invece che ad un sound sintetizzato.

L'apparecchio, come si vede, non considera un amplificatore di potenza; infatti, non sapendo per quale impiego deve servire, sarebbe stato impossibile dimensionare quest'altra sezione. Mi spiego. Nell'uso "casalingo" quale calma-nervi della sera, per esempio, 500 mV sono più che sufficienti. Se viene però impiegato in un teatro, forse nemmeno 100 W ba stano, e se lo si impiega come ausilio "musicale" non serve nessuna potenza, perchè sarà collegato ad un mixer.

Comunque, l'ampiezza mediana dei segnali (che visti all'oscilloscopio hanno l'aspetto dell'erba - cosiddetta nel gergo dei radaristi ovvero sono diritti e sembrano proprio un prato all'inglese mosso dal vento se osservato rasoterra) e di 50 - 80

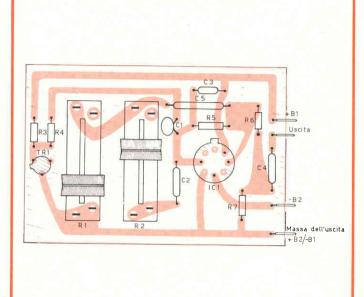


Fig. 3 - Disposizione dei componenti sulla basetta a circuito stampato.

LE INDUSTRIE ANGLO-AMERICANE IN ITALIA VI ASSICURANO

UN AVVENIRE BRILLANTE

LÂUREA DELL'UNIVERSITA' DI LONDRA

Matematica - Scienze onomia - Lingue, ecc. RICONOSCIMENTO LEGALE IN ITALIA

base alla legge 40 Gazz. Uff. n. del 20-2-1963

c'è un posto da INGEGNERE anche per Voi Corsi POLITECNICI INGLESI Vi permetteranno di studiare a casa Vostra e di conseguire tramite esami, Diplomi e Lauree

INGEGNERE regolarmente iscritto nell'Ordine Britannico.

una CARRIERA splendida

ingegneria CIVILE - ingegneria MECCANICA

un TITOLO ambito

ingegneria ELETTROTECNICA - ingegneria INDUSTRIALE

un FUTURO ricco di soddisfazioni

ingegneria RADIOTECNICA - ingegneria ELETTRONICA

Per informazioni e consigli senza impegno scriveteci oggi stesso.

BRITISH INST. OF ENGINEERING TECHN.

Italian Division - 10125 Torino - Via Giuria 4/F

Sede Centrade Londra - Delegazioni in tutto il mondo.

Vista frontale del prototipo del generatore di segnali audio metereologici. La scatola deve essere in metallo schemante.

mV; cio che basta per pilotare direttamente qualunque mixer, registratore o complesso HI-FI senza che vi sia la necessità di impiegare stadi ulteriori. Per l'alimentazione bastano due pile 9V, genere radiolina; il generatore infatti abbisogna del +/- B differenziale, con lo zero al centro, ma assorbe non più di un paio di mA da ciascun ramo. Sarebbe quindi forse una complicazione inutile un alimentatore di rete stabilizzato apposito. Una normale "006/P", con un carico di 1,6-2 mA offre una durata di molte centinaia di ore di lavoro.

Il montaggio dell'apparecchio è molto facile: nel mio prototipo, un circuito stampato comprende ogni parte, escluso il doppio interruttore monocomandato "S1/A - S1/B" il jack di uscita e le due pile.

Le piste di tale basetta sono riportate nella figura 2. Per evitare ogni incertezza, la scala è esattamente 1:1, ovvero al naturale. Nella figura 3 si vede "l'altra faccia" del montaggio, ovvero il medesimo ma ripreso dal lato componenti.

Le parti dalla massa più importante, sono i potenziometri R1/R2, del tipo "slider" o a scorrimento. Questo modello, che io ho scelto in omaggio alla modernità e all'estetica, non è certo... "obbligatorio".

Altrettanto bene vanno i controlli tradizionali a rotazione, se il valore è rispettato. Anche l'IC nel contenitore genere TO/5, non è obbligatorio, infatti il µA 741 è prodotto anche nella versione "dual in line" con involucro plastico. Se però il lettore non ha ben chiara l'equivalenza delle connessioni, è bene che impieghi il tipo classico visibile nelle fotografie, perchè combinare qualche pasticcio è molto facile, quando si è mediamente esperti o poco esperti.

A proposito; il supporto bianco che si scorge sotto l'IC, non è uno zoccolo, ma un semplice *spaziatore*, che durante la saldatura evita ogni possibile surriscaldamento dell'integrato, piuttosto sensibile a questo effetto distruttivo.

L'apparecchio è tanto semplice che vi è ben poco da aggiungere; una volta tanto mancano persino i condensatori elettrolitici ed i diodi: tanto di guadagnato!

Comunque, per chi inizia, dirò ancora che i potenziometri slider hanno generalmente quattro terminali e due fanno capo al rotore; quindi, il reoforo che non serve può essere semplicemente tagliato via. Se vi è la connessione di schermo, la si salderà alla massa generale.

Le connessioni dell'IC sono mostrate nella figura 1, viste dal di sopra come è abitudine mostrarle. Il transistore impiegato nel prototipo è un BC120, che può essere sostituito da un BC107 o BC108, sebbene con risultati meno brillanti, infatti i possibili rimpiazzi "soffiano" meno. Se il BC120 ri-

sultasse difficile da reperire, e si usasse un qualunque NPN al Silicio per uso generico di piccola potenza, un rumore bianco ampio può essere ottenuto regolando R3. Ovvero sostituendola con un trimmer da 47 k Ω da regolare per i migliori risultati. Poiché le piste del circuito sono più che ragionevolmente spaziate, durante la saldatura non vi è pericolo che si formino "ponticelli" e simili, quindi altri consigli sarebbero davvero di troppo, relativamente al cablaggio.

V'è solo da dire che il complesso deve lavorare racchiuso in una *scatola metallica schermante* altrimenti raccoglie del ronzio. La scatola, per fungere da schermo, deve essere collegata alla "massa" comune, ovvero al capo +B2/-B1.

Per questa ragione, in precedenza dicevo che i potenziometri a scorrimento possono essere sostituiti da quelli di tipo "normale", infatti, sull'involucro, è assai più facile praticare due fori che le fessure necessarie per gli "slider". Veda comunque il lettore la soluzione preferita.

A parte i controlli visti, sul pannello troverà posto il solo interruttore, dato che il Jack (per audio) di uscita, sarà posto su di fianco o sul retro per non essere disturbati dal cavo di raccordo durante le regolazioni.

Il collaudo dell'apparecchio è molto semplice; dopo aver connesso le pile con la massima attenzione per la polarità ed aver richiuso la scatola, si porterà il segnale ad un amplificatore di buona qualità, meglio se HI-FI mediante il solito cavetto unipolare per audio schermato.

Azionato S1/A - S1/B, se non si ode quasi nulla, si aggiusterà prima R1, poi R2: in tal modo il "vaso di Pandora" sarà scoperchiato e si potranno studiare gli effetti. R1 è piuttosto critico nell'aggiustamento, quindi sarà bene regolarlo con piccoli spostamenti successivi.

Se il lettore lo giudicasse *troppo* critico potrà sostituirlo con un'altro del valore di 15 k Ω , ma in tal modo andrà perduta una parte del sound.

ELENCO DEI COMPONENTI

C1 : condensatore ceramico da 10 kpF
C2 : condensatore a film plastico da 100 kpF

C3 : condensatore ceramico da 4700 pF (4500 pF) - 10% max

C4 : eguale al C2

C5 : condensatore a film plastico da 8000 pF - 10% max

IC1 : micrologico "741" in TO/5, di qualsiasi marca

R1 : potenziometro lineare da 22 k Ω (vedere testo)

R2 : potenziometro lineare da 50 k Ω (vedere testo)

R3 : resistore da $10 \text{ k}\Omega$, 1/2W, 10%

R4 : resistore da 15 k Ω , 1/2W, 10%

R5 : resistore da 1 MΩ, 1/2W, 10%

R6 : resistore da 4,7 kΩ, 1/2W, 10%

R7 : resistore da 27 kΩ, 1/2W, 10%

TR1 : transistore BC120 o equivalenti (vedere testo)

B1 : pila da 9V per i piccoli radioricevitori

B2 : eguale alla B1

S1-A/S1-B: doppio interruttore monocomandato.

300'000 GIOVANI IN EUROPA SI SONO SPECIALIZZATI CON I NOSTRI CORSI

Certo, sono molti. Molti perchè il metodo della Scuola Radio Elettra è il più facile e comodo. Molti perchè la Scuola Radio Elettra è la più importante Organizzazione Europea di Studi per Corrispondenza.

Anche Voi potete specializzarvi ed aprirvi la strada verso un lavoro sicuro imparando una di queste professioni:

Le professioni sopra illustrate sono tra le più affascinanti e meglio pagate: la Scuola Radio Elettra, la più grande Organizzazione di Studi per Corrispondenza in Europa, ve le insegna con i suoi

CORSI DI SPECIALIZZAZIONE

TECNICA (con materiali)
RADIO STEREO A TRANSISTORI - TE-LEVISIONE BIANCO-NERO E COLORI -ELETTROTECNICA - ELETTRONICA INDU-STRIALE - HI-FI STEREO - FOTOGRAFIA -ELETTRAUTO.

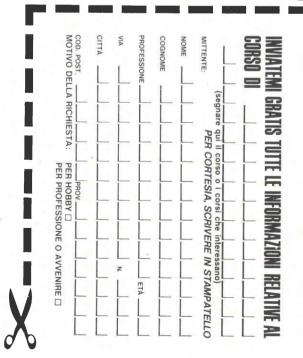
Iscrivendovi ad uno di questi corsi riceverete, con le lezioni, i materiali necessari alla creazione di un laboratorio di livello professionale. In più, al termine di alcuni corsi. potrete frequentare gratuitamente i laboratori della Scuola, a Torino, per un periodo di perfezionamento.

CORSI DI QUALIFICAZIONE PROFESSIONALE

PROFESSIONALE
PROGRAMMAZIONE ED ELABORAZIONE
DEI DATI - DISEGNATORE MECCANICO
PROGETTISTA - ESPERTO COMMERCIALE - IMPIEGATA D'AZIENDA - TECNICO
D'OFFICINA - MOTORISTA AUTORIPARATORE - ASSISTENTE E DISEGNATORE
EDILE e i modernissimi corsi di LINGUE.
Imparerete in poco tempo, grazie anche
alle attrezzature didattiche che completano
i corsi, ed avrete ottime possibilità d'impiego e di guadagno.

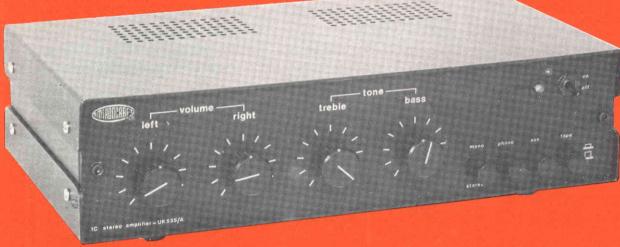
CORSO ORIENTATIVO PRATICO (con materiali)

SPERIMENTATORE ELETTRONICO
particolarmente adatto per i giovani dai 12
ai 15 anni.


CORSO NOVITÀ (con materiali)

Un corso nuovissimo dedicato allo studio delle parti elettriche dell'automobile e arricchito da strumenti professionali di alta precisione.

IMPORTANTE: al termine di ogni corso la Scuola Radio Elettra rilascia un attestato da cui risulta la vostra preparazione. Inviateci la cartolina qui riprodotta (ritagliatela e imbucatela senza francobollo), oppure una semplice cartolina postale, segnalando il vostro nome cognome e indirizzo, e il corso che vi interessa. Noi vi forniremo, gratuitamente e senza alcun impegno da parte vostra, una splendida e dettagliata documentazione a colori.



Via Stellone 5/858 10126 Torino

AMPLIFICATORE 10-10W STERED

UK 535/A

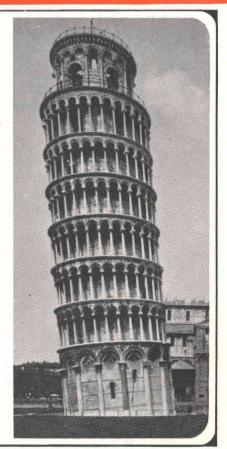
Il circuito elettrico è interamente realizzato con circuiti integrati che, oltre a consentire un'ottima resa acustica, assicurano la totale protezione dei circuiti finali.

E' dotato di comandi separati sia per il tono che per il volume e di prese per registratore, giradischi, sintonizzatore e casse acustiche.

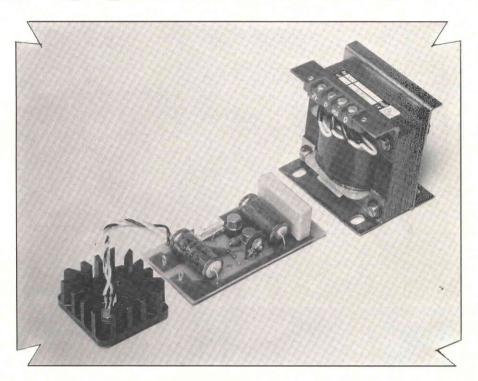
La risposta di freguenza, a —3 dB, è di 40 ÷ 20.000 Hz.

Montato L. 44.500

IN VENDITA
PRESSO TUTTE LE SEDI


il punto di vendita di PISA

si è trasferito


in via F. TRIBOLATI, 4 - Telef. 25.357

COMELCO_{s.a.s.}

Tutti
i 48.000
componenti
elettronici del
catalogo G.B.C. - TV colori
Impianti HI-FI stereo - Autoradio
Televisione a circuito chiuso
Baracchini - Strumenti di misura
Alimentatori - Pile Hellesens

"IL SODDISFATUTTI"

ALIMENTATORE 12 V - 1,5 A AUTOPROTETTO

Itimamente una "caterva di lettere ha invaso la nostra redazione, ed ognuna di esse chiedeva un consiglio, un parere, uno schema...

Dopo averle differenziate secondo gli argomenti abbiamo incominciato ad esaminare la "CATASTA ALIMENTA-ZIONE", così definita perché conteneva quesiti di carattere "alimentatorio".

Alcuni lettori richiedevano un alimentatore da 12,6 V per meglio sfruttare i loro baracchini, autoprotetto, poco costoso e possibilmente reperibile in commercio in kit; altri desideravano un alimentatore da tenere in laboratorio che fornisse una tensione di $12 \div 13$ V, 1,5 A con un basso ripple; altri ancora richiedevano lo schema di un alimentatore che si scosti dagli schemi classici a transistori e che non impieghi il noto μA 723, ma neanche integrati irreperibili.

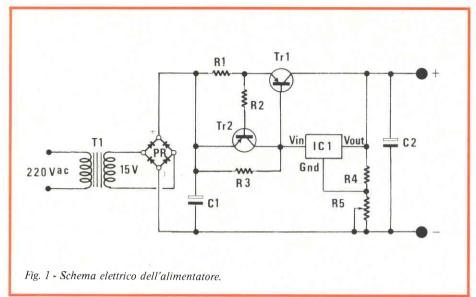
Ma come accontentare tutti questi lettori evitando di pubblicare una infinità di schemi? Semplice! Pubblicando lo schema, il circuito stampato, le fotografie, e tutto ciò che riteniamo necessario per la costruzione di un alimentatore che soddisfi tutte le esigenze.

Alimentazione: 220 Vc.a.

Tensione di uscita: $12 \div 13$ V c.c. Max corrente fornibile: 1,5 A

Protezione sui sovraccarichi e cortocircuiti in uscita: intervento a 2 A.

Reperibilità materiale: presso tutte le sedi GBC o in scatola di montaggio.

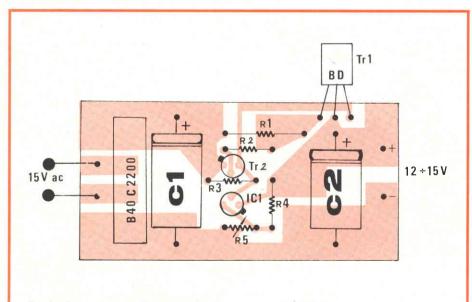

Per ottenere tutto ciò ci siamo valsi dell'integrato TBA 625B della SGS che è nato con precisi scopi industriali. Questo integrato lo abbiamo scoperto sfogliando un Data Book.

Procuratici i campioni abbiamo prontamente allestito un paio di prototipi che si sono rilevati ottimi per il nostro scopo.

Il TBA 625B è un integrato monolitico regolatore di tensione in contenitore TO-39 che può fornire una tensione stabilizzata di 12 V ed una corrente di 100~mA e possiede una resistenza di uscita di soli $0,1~\Omega$. Il suo rumore di soli $150~\mu\text{V}$ lo rende ottimo nell'impiego di alimentatori per apparecchi digitali ed in tutte quelle applicazioni dove il rumore può essere causa di inconvenienti funzionali o tecnici. Nel suo piccolo contenitore racchiude ben 14 transistori, due zener, un diodo, due condensatori e 14 resistori.

Tutto ciò fa capo a soli tre terminali così che la possibilità di errore di montaggio è ridotta al minimo, anche se ciò permette di scambiarlo con un normale transistore tipo 2N1711 ed altro.

Il terminale dell'integrato in prossimità della linguetta metallica sporgente dal contenitore corrisponde all'uscita, il centrale all'ingresso e il rimanente al Ground, ad ogni modo osservate (fig. 4) in cui sono rappresentate le zoccolature del TBA e del BD 284; ad ogni modo se


to non potrete incorrere nell'errore di montare erroneamente il circuito integrato poiché il circuito stampato, essendo disegnato tenendo presente le varie zoccolature, fa sì che voi non dobbiate incrociare le varie "gambette" dell'integrato.

Questo alimentatore risulterà quindi adattissimo a tutti quegli impieghi che richiedono una tensione stabilizzata di

impiegherete il nostro circuito stampa-

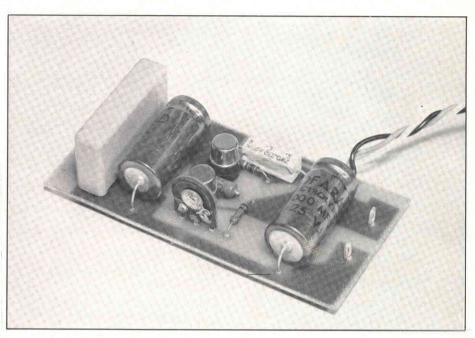
Questo alimentatore risulterà quindi adattissimo a tutti quegli impieghi che richiedono una tensione stabilizzata di circa 12 V ed avendo una stretta gamma di variazione in tensione (da 12 V a 13 V) permetterà di regolare finemente la tensione di uscita e quindi voi che possedete un "baracchino" potrete sfruttare tutta la sua potenza alimentandole con quel mezzo Volt in più del solito che vi farà certamente guadagnare in potenza, e voi, sofisticati hobbisti, potrete mostrare ai vostri amici un alimentatore insolito, anche se non nuovo.

Fig. 3 - Disposizione dei componenti sulla basetta a circuito stampato dell'alimentatore.

SCHEMA ELETTRICO

Come potete osservare dalla fig. 1 i componenti esterni al circuito integrato sono alquanto scarsi e questo è dovuto alla completezza interna di esso.

Il trasformatore T1 fornisce una tensione di 15 V alternati che vengono applicati al ponte raddrizzatore ad onda intera PR che non è altro che il solito B40/C2200 o qualsiasi altro di caratteristiche pressoché simili.


La tensione pulsante così ottenuta viene in un primo tempo livellata da C1 e quindi applicata a R1, di cui spiegheremo in seguito la funzione, e a R3 nonché all'emettitore di TR2. Tramite R1 la tensione giunge all'emettitore del transistore TR1 che è un PNP di media potenza che provvede, pilotato dal TBA e da TR2, a stabilizzare la tensione al valore voluto e grazie al suo beta, livella ulteriormente la tensione. Il gruppo formato da R1, R2 e TR2 non è altro che una protezione per TR1 il quale, al contrario di IC1, non risulterebbe protetto dai cortocircuiti e sovraccarichi di uscita e quindi verrebbe messo fuori uso in breve tempo. Il resistore R1 provoca una caduta di tensione proporzionale alla corrente che l'attraversa, tensione che applicata a R2 e alla base di TR2 fa sì che essa entri in conduzione polarizzando inversamente TR1 che limita la corrente che lo attraversa.

L'integrato, essendo un regolatore fisso a 12 V, non potrebbe teoricamente fornire una tensione di uscita che varia sino a 13 V, ma noi con un trucchetto abbiamo risolto il problema. Il TBA625 B fornisce una tensione fissa a 12 V tra l'uscita e il terminale Ground, ma se noi colleghiamo il Ground a un partitore, costituito nel nostro caso da R4 e R5, possiamo, se così si può dire, sommare a questi 12 V, qualche altro volt. Spieghiamoci meglio: ai capi di R4 noi avre-

mo sempre una tensione di 12 V regolata dall'integrato stesso, ma R4 fa parte del partitore di tensione, in unione a R5, che ha un rapporto, con R5 regolato al massimo della sua resistenza, di circa 6,6, cioè la tensione ai capi di R5 è 6,6 volte inferiore di quella presente ai capi di R4. In tale caso la tensione tra l'uscita dell'integrato e massa è di circa 15 V, mentre con R5 regolato per la sua minima resistenza è di 12 V, pari alla tensione costruttiva dell'integrato. Aumentando il valore di R5 oltre i 100 Ω potremmo aumentare la tensione in uscita dall'alimentatore ma ciò a scapito della sicurezza del tutto poiché i valori dei componenti e le caratteristiche dell'integrato sono stati calcolati entro questi parametri. Il condensatore all'uscita, cioé C2 livella ulteriormente la tensione ed inoltre, data la nota funzione del condensatore come "serbatojo di cariche elettriche", impedisce delle leggere variazioni di tensione a cambiamenti di carichi improvvisi.

ISTRUZIONI DI CABLAGGIO

Nel montare i vari componenti sul circuito stampato di fig. 2 rifatevi sempre alla loro disposizione di fig. 3 facendo attenzione a non invertire i poli

Basetta a circuito stampato a montaggio ultimato.

dei condensatori elettrolitici e, peggio, e terminali dei transistori e dell'integrato, pena una "fumata" del tutto appena inserirete tensione.

Provvedete a munire TR1 di un dissipatore (tipo a ragno od altro) e prima di avvitare TR1 ad esso spalmatelo con del grasso al silicone che migliorando la conduzione termica tra transistori e dissipatore eviterà surriscaldamento del tersistore. Qualora voleste poter controllare la tensione senza ogni volta aprire il

TBA 625B Output

Input

Ground visto dal sotto

BD 284

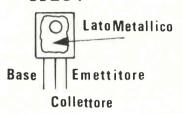


Fig. 4 - Disposizione dei terminali dei transistori impiegati.

ELENCO DEI COMPONENTI

R1 : resistore da $0.15 \Omega - 2 W$

R2 : resistore da $100 \Omega - 0.3 W$

R3 : resistore da 15 Ω - 0,3 W

R4 : resistore da 1 kΩ - 0,3 W

R5 : trimmer da 100Ω

C1: cond. elettrol. da 1000 µF - 35 V

C2 : cond. elettrol. da 100 µF - 25 V

TR1: transistore BD284 oppure BD286

TR2: transistore BFY64 od equivalente

IC1 : circuito integrato TBA 625 B

: trasfor. d'aliment. primario 220 V

secondario 15 V

PR : ponte raddriz. B40/C2200

o altro con 40 V - 2,5 A

: dissipatore per il BD 284

: circuito stampato 100 x 50 mm

contenitore dell'alimentatore sostituite il trimmer R5 con un potenziometro di egual valore che fisserete al pannello anteriore del contenitore. Vi consigliamo di impiegare un buon potenziometro lineare; meglio se a filo. Per collegare il trasformatore al circuito stampato non impiegate filo microscopico poiché la corrente che lo passerà potrà salire anche a due ampère. Se prevedete di impiegare l'alimentatore sempre con carico 1.5 A vi consigliamo di munire l'integrato di un piccolo dissipatore a stella. Impiegate per T1 un buon trasformatore da 30 W poiché é meglio abbondare in potenza onde evitare fastidiose cadute di tensioIl kit di questo alimentatore può essere richiesto a "Sperimentare" via Pelizza da Volpedo, 1 - 20092 Cinisello Balsamo al prezzo di L. 17.000 (compreso trasformatore e spese postali). Si accettano solo ordini con pagamento anticipato tramite vaglia postale.

ne sotto carico. Qualora impiegaste come contenitore una scatola di ferro potete anche evitare di inserire TR1 su un dissipatore poiché potrete usare il fondo del contenitore stesso, ricordandovi però di interporre tra transistori e metallo una mica isolante, poiché la parte metallica posteriore del BD284 è collegata al collettore dello stesso e quindi la scatola vi risulterebbe collegata al positivo. Qualora non riuscite a reperire il ponte raddrizzatore B40/C2200 od altre potrete sostituirlo con un ponte formato da quattro diodi che portino almeno 3 A a 50 V (esempio il 30S1 reperibile presso tutte le sedi GBC). Il circuito non necessita di alcuna taratura per cui una volta ultimato il montaggio del circuito non vi rimarrà che dare tensione al tutto per constatare il suo ottimo funzionamento sempreché non abbiate commesso errori. Tenete presente che potete sostituire TR1 con qualsiasi altro transistore PNP che abbia una Vceo di almeno 40 V, una Ic= di 3 A e un beta di 50.

Anche TR2 può essere sostituito con altri transistori purché abbiano caratteristiche simili

ELETTRONICA

20136 MILANO

Viale C. di Lana, 8 - Tel. (02) 8.358.286

DAGLI U.S.A. EVEREADY

ACCUMULATORE RICARICABILE

ALKALINE ERMETICA 6 V 4 Ah/10 hr.

Radioamatori E' RISOLTO IL PROBLEMA!!

TENSIONE FILTRATA E LIVELLATA PIU' DI COSI'!

NESSUNA FONTE DI ENERGIA O ALIMENTATORE PUO' UGUAGLIARE LE BATTERIE IN TAMPONE

Contenitore ermetico in acciaio verniciato mm 70 x 70 x 136 Kg 1

Caricatore 120 Va.c. 60 Hz - 110 Va.c. 50 Hz (a richiesta riduttore 220 Va.c. L. 1.500)

Possibilità d'impiego apparecchi radio e TV portatili, rice-trasmettitori, strumenti di misura, flash, impianti di illuminazione e d'emergenza, impianti di segnalazione, lampade portatili, utensili elettrici, giocattoli, allarmi, ecc.

Oltre ai già conosciuti vantaggi degli accumulatori alcalini come resistenza meccanica, bassa autoscarica e lunga durata di vita, l'accumulatore ermetico presenta il vantaggio di non richiedere alcuna manutenzione.

Ogni batteria è corredata del caricatore, il tutto a lire 22.000; 10 pezzi lire 21.000;

100 pezzi da convenirsi.

Modalità

Spedizioni non inferiori a L. 5.000

Pagamento in contrassegno

Spese trasporto (tariffe postali) e imballo a carico del destinatario. Non disponiamo di catalogo)

ELETTRONICA

20136 MILANO

Viale C. di Lana, 8 - Tel. (02) 8.358.286

Generatore di funzioni e VCO in unico chip 16 pin. Può generare contemporaneamente 3 forme d'onda da 0,001 Hz a 1,5 MHz. Fornito con schema di applicazione L. 6.500

VHF SQUARE WAVE **GENERATOR SG 21**

Nuovo con manuale (marca Advance) da 9 kHz a 100 MHz onda quadra Ingombro mm. 270x130x220 Peso kg. 3.600 L. 69.000

VENTOLA ROTRON SKIPPER

Leggera e silenziosa V 220 - W 12 Due possibilità di applicazione diametro pale mm 110 profondità mm 45 neso ka 0.3 Disponiamo di quantità L. 9.000

VENTOLA EX COMPUTER

220 Va.c. oppure 115 Va.c. ingombro mm 120 x 120 x 38

L. 9.500

REOSTATO	A TOROIDE
----------	-----------

25 W - 4700 Ω - ø 45

L. 1.500

MATERIALE MAGNETICO

Nuclei a C a grani orientati per trasformatori tipo Q25 tipo T32 35 W L. 400 L. 1.000 50/70 W 150 W 1. 2.000

CONVERTITORI DI FREQUENZA ROTANTI

da 50 a 60 Hz -2 kW - 12 kW

MOTORIDUTTORE A SPAZZOLE

RPM 50 48 Vc.c. 110-220 Va.c. L. 8,000

PULSANTE PUSH-PULL

L. 200 cad.

CIRCUITI MICROLOGICI TEXAS Tipo DTL plastici

	ON	15830 15836 I 15846 15899	Hex Qua	Inv d :	erte 2-In	er put		٠.	•	٠, -	٠. ا	•		٠		6	L.	90 110
	MOT	TOROLA	ME	CL	11/10	000	/12	00	-	tipo	Е	.C.I	L.	plas	st.			
	MC	1004/F 1007/F	٠.														L.	450
ı	MC	1007/P													96		L.	450
	MC	1010/F	٠.												30	8	L.	450
	MC	1013/F	٠.			٠		٠		٠	٠				Œ.		L.	900
	70 250	È in n 0 24 V 0 48 V	ninia c.c.	atu 4 S	ra ic.	S.T	.C.	Si	em	en	s/\	/arl	ley				L. 1.	.100
	700	coli por	dot	- C	ю.												- '	.030

Zoccoli per detti VENTOLA BLOWER

200-240 Va.c. - 10 W PRECISIONE GERMANICA motoriduttore reversibile diametro 120 mm. fissaggio sul retro con viti 4 MA

L. 1.100 L. 1.050 L. 200

RADDRIZZATORE A PONTE WESTINGHOUSE (selenio)

PACCO Kg. 5 materiale elettronico		
Interr. compon. spie cond. schede SWITCH		
intern. compon. spie cond. scriede Switch		
elettromagneti commut. porta fusibili ecc		L. 4.500

DIODI RADDRIZZATORI

ALIMENTATORI

peso kg. 1

STABILIZZATI A GIORNO

Ingombro mm 100x80xprof.110

CONTA IMPULSI DA PANNELLO CON AZZERATORE MAX 25 imp/sec. HENGSTCER EX COMPUTER

110 Vc.c. - 6 cifre

Temporizzazione da pochi µs ad ore

Funziona da monostabile e da astabile Duty cycle regolabile

Corrente di uscita 200 mA (fornita o assorbita)

Corrente di uscita 200 mA (rornita o assorbita) Stabilità 0,005% x °C Uscita normalmente alta o normalmente bassa Alimentazione \pm 4,5 V \div \pm 18 V I = 6 mA max (esclusa l'uscita) . L. 1.200

INTEGRATO NE555

L. 10.000

England 13 Vc.c. 2 A

(A = Dritti	; AR = I	Rovesci)				•
1183 A	50 V	40 A			L.	200
1183 AR	50 V	40 AR			L.	200
1184 A	100 V	40 A			L.	250
1184 AR	100 V	40 A			L.	250
1188 A	400 V	40 A			L.	450
1188 AR	400 V	40 A			L.	450
1190 A	600 V	40 A			L.	650
MR 1211	SLR 80	V 100	Α		L. 1	1.500
Raffredd. p	oer detto	130 x 60	хЗ	0	L.	500
1 N 4007	1000 V	1 A			L.	100
SCR RCA	7019 1	000 V	15	Α	L	1.500
Trans. 2 N	3055 sil	icon. ge.			L.	700
Trans. 1 W	/ 8723 c	ommuta	Z.		L.	100

OFFERTA SPECIALE

pacco da 500 resistenze assortite 5%	L. 4.000
pacco da 100 resistenze assortite 1%	L. 1.500
pacco da 100 cond. elettrol. assort.	
da 1 a 4000 mF	L. 3.800
pacco da 100 cond policarb assort	
pacco da 100 cond. policarb. assort. da 100 V a 600 V	L. 3.800
pacco da 50 cond. mica arg. 1%	L. 2.500

PACCO EXTRA SPECIALE

500 Componenti così suddivisi-

n. 50 condensatori elett. assiali da 1 a 4000 mF n. 50 condensatori elett. verticali da 1 a 1000 mF

n. 50 mhilard policarbonato da 100 V a 600 V n. 50 condensatori mica argentata 1%

300 resistenze assortite 5%

n. 10 condensatori a vitone da 1000 a 15000 mF . L. 10.000

CONTATTI REED IN AMPOLLA

Lunghezza mm 21 - ø 2,5 L. 400 10 pezzi L. 3.500 MAGNETE PER DETTI Lunghezza mm 9 x 2,5 SCONTI PER QUANTITÀ L. 200 10 pezzi L. 1.500

NUMERIC TUBE B 5853 0-9 Ø 12 mm height Brand New L. 2.000 Also Alpha Numeric Nixie Tube

B 7971 Displays alphabet & 0-9 numerals Ø 2 1/2" L. 2.000 100 pezzi sconto 10% Fornite con schema

. . L. 2.000

PACCO SPECIALE SCHEDE EX COMPUTER

n. 4 schede 350x300 mm n. 4 schede 250x150 mm n. 5 schede 150x 65 mm

n. 10 schede miste

Le schede montano transistori al silicio, integrati, condensatori elettrolitici e al tantalio, diodi, trasformatori d'impulso, resistenze L. 10.000

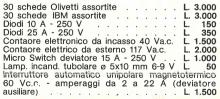
MOTORI MONOFASI A INDUZIONE A GIORNO

24 V ~ 40 V	V - 2800 RPM		L. 4.000
110 V - 35 V	V - 2800 RPM		L. 2.000
220 V - 35 W	V - 2800 RPM		L. 2.500

ROTRON-SPIRAL SIMPLEX

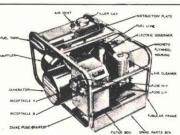
Rivoluzionario ventilatore ad alta pressione. Caratteristiche simili ad una pompa senza però avere parti soggette ad usura tranne i cuscinetti. Ideale per trasportatori di nastro, cuscinetti d'aria e macchine per il tratta-mento di carta e schede dove sia neces-sario un grande differenziale di pressione. sario un grande differenziale di pressione.

Motore monofase o trifase isolato in classe
F (NEMA) – 220 V - 50 Hz monofase (condensatore fornito) – 220/230 V - 50/60 Hz
trifase – 370 W max. – Temperature di impiego: da –25 a +55°C – Vita: 90% di sopravvivenza fino a 20.000 ore a 40°C – Livello
di rumore: 56 dB SIL o NC 58 (Tipo SL2
a 50 Hz e 12 litri/secondo) – Peso: 8,8 o 9,9 kg (Simplex). Approvato UL. L. 43.000


STABILIZZATORI PROFESSIONALI IN A.C.

Tolleranza 1% marca A.R.E. 250 W - ingresso 125/160 220/280/380 ± 25% uscita 220 V ± 1% ingombro mm 220x280x140 peso kg 14,5 L. 50.000

500 W - ingresso 125/160 220/280/380 \pm 25% uscita 220 V \pm 1% ingombro mm 220x430x140 peso kg 25 L. 80.000


250 W - Advance ingresso 115-230 V ± 25% uscita 118 V ± 1% L. 30.000

MATERIALE SURPLUS

Modalità

- Spedizioni non inferiori a L. 5.000
- Pagamento in contrassegno.
- Spese trasporto (tariffe postali) e imballo a carico del destinatario. (Non disponiamo di catalogo).

GRUPPO ELETTROGENO A MISCELA

Generatore filtrato 7,5 Vc.c. - 35 W 550 Vc.c. - 110 W Nuovo e completo di istruzioni. L. 110.000

SIRENA PROVA

"Questo dispositivo, pur essendo stato previsto come sistema di prova "dinamico" per IC del genere "Quad 2 input NAND GATE", genera, proprio grazie ai quattro Gates che oscillano, un segnale audio a più toni che rassomiglia a quello che ricava da una sirena elettropneumatica. Quindi, oltre ad essere un utile sistema di prova, il tutto può anche servire per qualunque allarme, antifurto, segnalatore d'emergenza."

onsiderando i diversi rami dell'elettronica, e le relative tendenze di progetto, si può dire che il tipo di IC più impiegato odiernamente sia il "Quadruplo NAND GATE a 2 ingressi".

Incontriamo questo utile dispositivo pressoché ovunque; in tutti i sistemi di conteggio abbastanza "importanti", negli organi elettronici, negli strumenti di misura, negli automatismi industriali e via dicendo.

Anche noi lo abbiamo impiegato spessissimo; per pilotare dei Clock, per realizzare generatori, per equipaggiare sistemi a due stati di ogni genere.

Lo abbiamo impiegato tanto spesso, da notare come sia seccante il non disporre di un sistema rapido e sicuro per provare questo genere di IC.

Si sa, come vanno le cose in laboratorio; a livello di prototipo, sovente si lavora con fili "volanti," parti connesse provvisoriamente, cavalletti e coccodrilli.

Non di rado, avviene che due fili si tocchino per un istante e che subito dopo si assista al malfunzionamento del complesso in esame.

Un IC del genere TTL, può essere danneggiato con molta facilità; basta una sovratensione momentanea, modestissima;

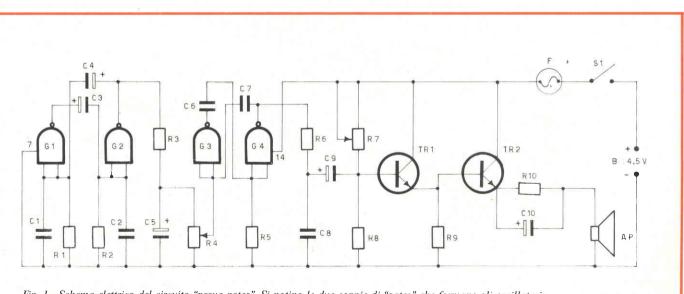
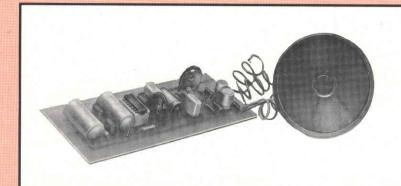



Fig. 1 - Schema elettrico del circuito "prova-gates". Si notino le due coppie di "gates" che formano gli oscillatori.

GATES

anche due o tre soli V "in più" sulla linea di alimentazione, o un sovraccarico all'uscita; o un impulso di corrente elevata ad uno dei molti ingressi. Potremmo anzi dire, che, tra tutte le parti che costituiscono un sistema elettronico, l'IC sia il gruppo operativo che meno sopporta ogni "maltrattamento".

Quindi il più "sospettabile", se avviene qualche incidente nella routine delle prove che sono necessarie per ottenere il massimo rendimento dal sistema.

E se lo si sospetta, come si fa, per provarlo?

Vi sono sul mercato degli strumenti dei cosiddetti "IC Tester", ma sono tremendamente complessi, per una sola prova richiedono diverse manovre di programmazione e, ultimo, ma non certo come importanza, questi apparati costano cifre molto elevate.

Vi sono anche le "sonde logiche", da considerare, ma queste segnalano l'attività degli IC solo "a caldo", quando sono inseriti in una macchina. Non possono indicare nulla se

l'integrato è preso a sé

Certi "intrepidi", infine, si spingono a misurare i micrologici con il Tester, conoscendo i valori tipici di resistenza che sono presenti tra i piedini più importanti, nel senso "diretto" ed "inverso". Questa è una pratica riservata a veri e propri specialisti. Per ogni altro tecnico è insicura e minaccia di danneggiare l'integrato, se si serra la portata in Ohm. Comunque, una misura del genere, solitamente da farsi con l'ausilio di resistori esterni, o di box di resistori, richiede un tempo che non è certo irragionevole definire assurdo, quindi può essere intrapresa solo in casi del tutto eccezzionali.

Considerato questo complesso di difficoltà, noi, per la prova degli IC più comuni, i "Quad Gate", abbiamo costruito un apparecchietto apposito, dal minimo impegno ma che dà

Si tratta di un sistema che produce l'oscillazione dei Gates. e di tutti e quattro contemporaneamente, sicchè basta inserire l'elemento dubbio nello zoccolo disponibile e chiudere l'interruttore; se si ode il suono, l'elemento funziona perfettamente; infatti, basta un solo Gate fuori uso per impedire il

lavoro, non importa quale.

Il dispositivo prova i seguenti modelli di IC: 4N1; 4G1; 4NA4; 9N00; 7000; 7400; SN7400; 8400; 9002; CN77; CN7400; D100-C/3400; DM7400; 8000; FJH131; FLH101; FLH105; HD2503; IDT7400M; LU387/A; M53210; MB8400; MC408; MC458; MC558; MC5400; MC7400; MH5400; MH7400; MH8400; MH8880; RG140; RG141; RG142; RG143; S8480; S8880; SFC400/E; SG140; SG141; SG142; SG143; SNK-6400; TD/3400; TG60-61; TG62; TG63; TG140; TG141; TG142; TG143; TL7400; TL8400; TNG3411; TNG3412; TNG3413; TNG3414; TTUL9002; U6A540051; U6A9N0059; USA900251;

Radioricevitore AM OC OL Potenza di uscita: 3W

Presa per auriculare Controlli di volume e tono a cursore

Antenna telescopica incorporata

Alimentazione a pile o a rete Dimensioni: 290x155x65 ZD/0718-00

military look

Radioricevitore AM FM Potenza di uscita: 0.2W Controllo numerico del volume Presa per auricolare Antenna telescopica incorporata Alimentazione a pile Dimensioni: 125x80x40 ZD/0595-00

Radioricevitore AM FM OL Potenza di uscita: 400mW Completo di auricolare e batterie

Antenna telescopica incorporata

Mobile in plastica antiurto Alimentazione a pile o rete Dimensioni: 180x150x230 ZD/0670-00

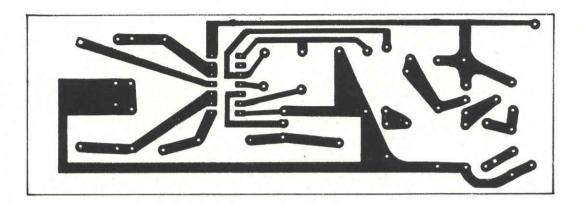


Fig. 2 - Basetta del circuito stampato vista dal lato rame in scala 1:1.

U6A900259; U31540051; U31740059; U319N0051; U319N0059; U6A740059; UPB201; US5400; US7400; U.S.N.5400; U.S.N. 7400; USS7400; ZN5400; ZN7400; ZN7400-6A; 5400U/1; 7400U/1; W5400; W7400N; WE7400-A; WG7400; WG7400-00; WG8400; TANDY RS276-1801.

Ci scusiamo per eventuali tipi non compresi in questa lista, che però non appaiono in alcuno dei testi consultati da noi per confronto e comunque non sono certo molto diffusi ma anzi fuori da ogni_"standard system" noto.

Ciò premesso, vediamo ora il circuito elettrico: figura 1. In un primo prototipo dell'apparecchio, i Gate erano provati a due a due. Ovvero, ciascuna coppia formava un multivibratore, ed una commutazione manuale inviava ad un piccolo amplificatore audio i relativi segnali. Di seguito, si è pensato di eliminare anche questa manovra, rendendo il tutto completamente automatico.

Come? Semplice, arrangiando il circuito in modo tale da *modulare* il segnale ricavato da un multivibratore mediante l'altro.

Così il tutto ha un solo controllo: S1, interruttore generale. Se l'IC in prova funziona bene, si ha all'uscita un suono che rammenta con estrema affinità quello delle "sirene" impiegate nelle varie guerre per avvertire la popolazione di un attacco aereo, cioè un timbro fondamentale dalla frequenza che si aggira sui 500 Hz, continuamente "innalzato" ed "abbassato", per la frequenza, da impulsi lentissimi, con un andamento tipico di 0,2 - 0,3 Hz; quindi un ciclo che muta nell'arco di tre secondi o analogamente.

Ai fini della prova, se non si ode nulla, l'IC evidentemente è difettoso; ma anche se si ode solo un sibilo *continuo* e non modulato lo si deve considerare tale; infatti in tal caso, il "modulatore" non funziona.

Vediamo più dettagliatamente il tutto.

I Gates G1 e G2, che possono essere due qualsiasi dei quattro compresi nell'IC, tramite C3 e C4, sono accoppiati in modo tale da formare un multivibratore astabile, che cambia di stato ogni tre secondi circa, anche in dipendenza dei valori di R2 - R2, C1 - C2.

Mentre G2 conduce, C5 si carica tramite R3, ed il valore raggiunto porta più o meno nella conduzione il Gate G3, che forma un secondo multivibratore in unione al G4. In pratica, questi due elementi operativi producono la nota di base che manifesta il funzionamento, ma il funzionamento è regolare solo se la nota ha un timbro che flutta continuamente verso

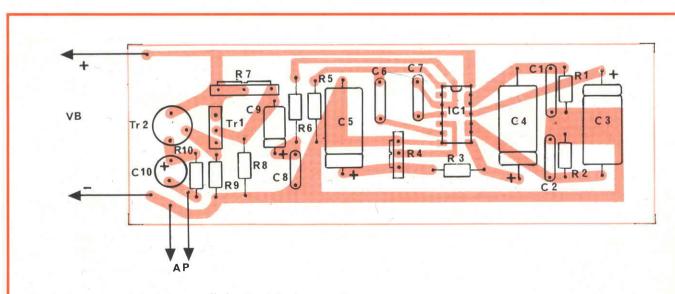


Fig. 3 - Disposizione dei componenti sulla basetta a circuito stampato.

l'acuto ed il basso a causa dell'azione degli altri due Gates.

Regolando R4,con un IC dalla provata efficienza, si raggiunge un punto in cui l'innesco è stabile ("prima" e "dopo" questa posizione, non ha alcun funzionamento, o solo un funzionamento parziale), e non muta anche se si innesta nello zoccolo un "Quad Gate" di marca diversa, ma eguale per prestazioni.

In pratica, l'audio "ondulato" che si ricava ai capi della coppia R6 - C8 potrebbe essere inviato a qualunque amplificatore o sistema di misura. Per semplificare il tutto, però, e rendendo autonomo, in sede di progetto si è previsto anche un piccolo sitema BF atto ad operare un altoparlante. Tale sezione è costituita da TR1 e TR2.

I detti formano un Darlington che non offre più di 30 mW di... "potenza". Il necessario per udire bene il segnale senza disturbare chi esegue altre misure o svolge altre attività nelle stanze vicine.

Il trimmer R7 serve a regolare la corrente di lavoro del TR2 indipendentemente dal guadagno dei transistori; in nessun caso si deve superare il valore di 40-50 mA. R8 stabilizza il punto di lavoro situato, in unione ad R9. R10, infine, limita l'intensità che scorre nell'altoparante Ap, mentre C10 aumenta il valore del segnale trasferito.

A livello di possibili modifiche, diremo che, praticamente, nessun valore (!) del doppio astabile in cui è inserito l'IC risulta critico; per esempio, C1 e C2 possono essere aumentati sino a 500 kpF, così come ridotti a 100 kpF. C3 e C4 possono essere diminuiti a 500 µF senza che alcuna funzione sia alterarata, ma solo avendo un suono "strano" all'uscita, un similare della sirena bitonale che impiega la Polizia francese, reso noto da tanti film transalpini che giungono in queste lande.

Analogamente, R1 ed R2 possono essere ridotte a 3,9 k Ω , se si vuole rendere più rapida la commutazione nello stadio modulabre, o elevate a 5600 Ω nel caso opposto.

I transistori che fanno parte del settore audio, possono essere BC149/B e 2N1613, come nel prototipo, ma nulla impedisce d'impiegare le coppie BC107 e 2N1711; BC147 e BC140; BC109 e BSY44 o vari analoghi.

Specie, considerando l'azione di R7 che impedisce "incidenti" da sovraccarico.

Se l'altoparlante Ap ha una impendenza di 45 Ω , sia R10 che C10 possono essere eliminati connettendo direttamente il diffusore tra TR2 (E) e la massa (-B). Piccoli altoparlanti da 40-45 Ω , molto sensibili, sono distribuiti correntemente dalla G B C Italiana, ed hanno un costo assai limitato.

Per l'alimentazione, serve una normale pila "quadra" Hel-

ELENCO DEI COMPONENTI

AP : altoparlante miniatura da 15 Ω , 1/4 di W

B : pila da 4,5 V

C1 : condensatore a film plastico da 150 kpF

C2 : eguale a C1

C3 : condensatore da 1000 µF/6VL o più

C4 : eguale a C3

C5 : condensatore da 500, oppure 640 µF/6VL o più

C6 : condensatore a film plastico da 470 kpF

C7 : eguale a C6 C8 : eguale a C1

C9 : condensatore da 25 µF/6VL o più

fusibile rapido da 100 mA

IC1 : circuito integrato 7400 o altro elencato nel testo

R1 : resistore da 4,7 kΩ, 1/4W, 5%

R2 : eguale a R1

R3 : resistore da 10 kΩ, 1/4W, 5%

R4 : trimmer potenziometrico da 4,7 k Ω , lineare

R5 : resistore da 5,6 kΩ, 1/4W, 5% R6 : resistore da 1000 Ω, 1/4W, 10%

R7 : trimmer potenziometrico da 100 kΩ, lineare

R8 : eguale a R3 R9 : eguale a R1

R10 : resistore da 10 Ω, 1/2W, 10%

S1 : interruttore unipolare

TR1 : transistore BC149/B o equivalente
TR2 : transistore 2N1613 o equivalente

Wattmetro R.F. con carico fittizio mod. 700X-4

Rosmetro mod. 2100X-2

R.O.S.: 1:1 ÷ 1:1.3 Frequenza: 3,5÷30MHz Impedenza: 50 ohm Dimensioni: 130x45x87 NT/0762-00

Rosmetro e wattmetro R.F. mod. 230X-2

Tre portate: 0÷10W, 0-100W, 100÷500W R.O.S.:1:1 - 1:1,3 Impedenza:50 ohm Dimensioni: 130x45x87 NT/0761-00 lensens 722 o similari, da 4.5 V.

Da queste note alla descrizione del montaggio il passo è breve; vediamo quindi il lavoro relativo.

La figura 2 mostra "al naturale" le piste del circuito stampato da impiegare; il lettore può quindi fare la copia del disegno direttamente sul lato "rame" della basetta che intende impiegare; non importa se in Vetronite, Bachelite o persino quella specie di cartonaccio bachelizzato che qualcuno importa dalla Germania e che è davvero spregevole, per impieghi che non siano l'audio più spicciolo, come in questo caso.

Il risparmio consegiuto ragionando sulla qualità del materiale che forma la base, può essere impiegato per acquistare uno zoccolo di buona classe che sostenga l'IC in prova. I modelli del prezzo più modesto, infatti, non offrono più un buon contatto quando si siano infilati ed estratti nelle loro mollette appena una cinquantina di IC, e sarebbe grave, procedere allo scarto per un difetto in questo senso; assai grave, perchè ci si potrebbe accorgere che gli IC erano buoni, ma il sistema di prova deficitario, dopo aver buttato via un buon numero di integrati perfetti.

Anche saldando lo zoccolo, si deve usare una certa cautela al fine di non produrre surriscaldamenti, perchè altrimenti, anche nei modelli migliori la plastica tende a "gonfiarsi" ed in tal modo i contatti si spostano come asse, rendendo poi difficile l'insersione degli IC, o non assicurando più l'ottimo contatto che è la prima pretesa del nostro sistema di prova.

Sistema di prova? Beh, sì; almeno primariamente, perchè udito il suono che si ricava, moltissimi penseranno al suo utilizzo come sorgente di allarme, ed in tal caso, come è logico, l'IC rimarrà per sempre al suo posto, salvo rotture sempre possibili, anche se rare.

Comunque, quale che sia l'impiego che si intende fare del

dispositivo, vediamo qualche ulteriore nota pratica.

I cinque elettrolitici impiegati, è importante che siano connessi nel giusto verso; anche se la tensione VB è bassa (4,5 V) e i condensatori sono da 12 VL, a lungo andare, l'inversione non può non romperli. Il che vale assai di più se la tensione di lavoro, per economia o facile reperibilità è ridotta a 6 V o a quei 4.6 VL che costituiscono il minimo attendibile.

Modificando leggermente le piste dello stampato, R4 ed R7 possono essere trimmer per montaggio "orizzontale" invece che verticale come nel prototipo. A parte una certa facilità di regolazione, minore o maggiore, la foggia di questi regolatori non cambia nulla; piuttosto, è importante che la variazione sia *lineare* perchè sia per il valore di 4,7 k Ω , che per 100 kΩ, vi sono modelli logaritmici o addirittura antilo-

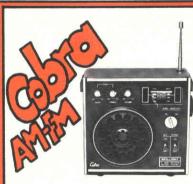
garitmici, e se non si specifica "cosa" si vuole, generalmente, il venditore offre quel che ha sotto mano.

Non crediamo sia necessario offrire altre note, perchè è molto semplice, questo montaggio; proprio alla portata anche del principiante attento.

Vediamo quindi il collaudo, in breve.

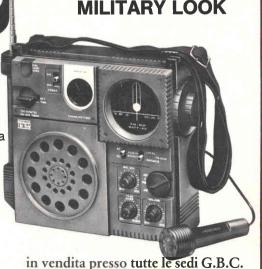
Portato R7 a circa metà corsa, ed inserito l'IC nel suo zoccolo (un IC sicuramente buono, naturalmente!) si darà tensione, dopo aver controllato che la "chiavetta" svasata del quadruplo Gate corrisponda alla posizione che si nota nella pianta delle parti, ovvero che abbia rispondenza verso il "positivo generale".

In nessun caso l'IC dovrà essere inserito con la tensione già applicata, perchè quasi di certo si romperebbe a causa delle extracorrenti ed extratensioni generate dalla non identicità della connessione al circuito dei piedini, che, per cause meccaniche, certo si connetterebbero prima uno che l'altro,


o prima un certo gruppo che un altro.

Bene; se una volta che sia applicata la tensione, non si ode nulla, nessun problema; R4 può essere in un punto tale da impedire l'oscillazione di "G3-G4". Sarà quindi necessario regolarlo lentamente; con la necessaria pazienza. Una volta che si oda il "piuuuoohh-piuuuaohh" che il complesso produce, si porrà un tester regolato per 50 mA fondo-scala tra Ap ed il negativo generale, regolando R7 sin che, nel momento in cui circola la maggiore corrente nel TR2, non si noti un assorbimento pari al maggior valore leggibile, senza che venga superato; ovvero senza che l'indice debba "battere" sui pernini di arresto.

L'apparecchio è così ultimato. Se lo si vuole impiegare come sorgente di allarme, all'uscita si potrà collegare un ulteriore stadio BF di potenza, un eventuale 2N3055, per esempio, connesso a sua volta in Darlington, con la base facente capo a C10/R10, l'emettitore in comune ed il collettore all'altoparlante, che solo in tal caso sarà da 8 Ω, 5W.


Se invece serve come prova Gates, lo ripetiamo, ma spesso le ripetizioni sono inutili, si dovrà essere certi che la tensione VB sia sempre staccata prima che l'IC vada ad occupare lo zoccolo.

Il fusibile "F", serve nel caso estremo che l'IC in prova sia cortocircuitato tra il piedino 7 e quello 14; in vero, fatto assai improbabile per la tecnologia dei semiconduttori che per quel che insegna l'esperienza. Infatti, in circa 10 anni di lavoro con gli IC, dai primissimi modelli sperimentali agli odierni, non ci è mai capitato di venderne uno in corto tra Vc.c. (+) e GND(-).

Radioricevitore AM FM Potenza di uscita: 1,5W Controllo separato per toni alti e bassi Controllo automatico della frequenza Presa per auricolare Alimentazione a pile o a rete Dimensioni:190x190x70 ZD/0764-00

Radioricevitore AM FM WB Potenza di uscita: 1W Controllo automatico della frequenza in FM Presa per microfono con controllo di volume Temporizzatore ON OFF da 0 a 120 minuti Indicatore dello stato di carica delle batterie Comando per sintonia fine a 162,55 MHz Presa per auricolare Alimentazione a pile o a rete Dimensioni: 230x195x70 ZD/0766-00

spaghetti

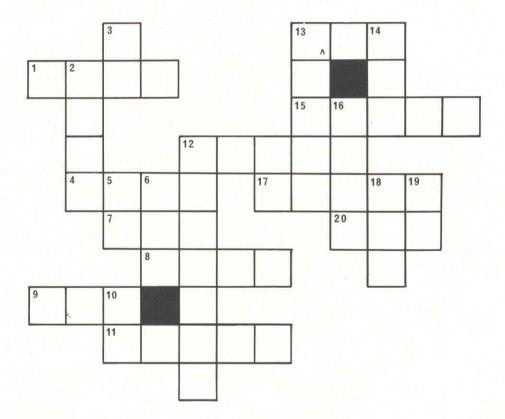
Di solito mi occupo di libri in Elettronica Oggi, dove c'è la rubrica delle recensioni. Ma questa volta faccio uno strappo alla regola perché il libro, di cui ho avuto notizia, è intitolato "The Spaghetti City Video Manual". Il libro non l'ho visto; della sua nascita mi ha informato il nostro Domenico Serafini. Il titolo è talmente simpatico che mi sembra d'obbligo parlarne qui in questa rubrica che (presumo, almeno) dovrebbe servire di distensione fra un circuito e l'altro. In breve, il manuale è stato compilato da un gruppo di operatori video assai esperti, ha un contenuto più pratico che teorico, e serve a chi non è tecnico per apprendere la teoria e la manutenzione di apparati per la produzione e la riproduzione video.

Non so che cosa c'entrano gli spaghetti per cui lascio libero sfogo alla fantasia per farci sopra qualche considerazione. Potrebbe essere un'analogia con l'antica idea di convivio e di agape, passata dal concetto della distribuzione del cibo a quello di distribuzione della conoscenza, se non della scienza. Serafini mi informa che i termini italiani non mancano di esercitare un certo fascino in America e sono quasi attesi.

In un libro intitolato "Viaggio con Charlie" l'autore, americano, accenna in una certa pagina ai cibi sotto vuoto del suo Paese, le cui etichette avvertono che il contenuto "non è mai stato toccato dalle mani di alcuno". E nel descrivere il poco entusiasmo nel nutrirsi di siffatta specie di cibi, l'autore volge il pensiero nostalgico "a certi piatti succulenti, gustati in Italia e in Francia, passati attraverso dozzine di mani".

Non c'è dubbio che la vecchia Europa, con tutte le sue stramberie, offra dei valori genuini che si vanno a nascondere nei posti più impensati, magari in un piatto di pasta asciutta. Che, a quanto pare, è fonte di delizia in tutte le latitudini e longitudini. Magari croce e delizia per le signore che temono di ingrassare.Il fatto è che "spaghetti" è ormai parola capita in tutto il mondo.

Dite spaghetti in Groenlandia o a Tahiti e capiscono al volo; non c'è pericolo che vi portino una camomilla. Magari spaghetti stracotti, ma sempre spaghetti. Dunque, è una parola internazionale che oltre tutto porta allegria. Forse è questo il motivo che ha spinto gli autori a metterlo nel titolo del loro "City Video manual".


Come dire: venite qui, senza musoneria nè pedanteria ma, anzi, con buon umore esploriamo insieme i segreti del video. Inutile aggiungere che "City video" lascia intendere che si tratta di televisione via cavo. Il libro ha il piccolo torto di essere scritto in inglese, ma penso che molti dei nostri lettori conoscano questa lingua. Se interessa, editrice è la Preager Publisher, 111 5th Avenue, New York C. 10003.

video power

Giacché ho fatto trenta, farò trentuno. Video Power, ossia Potenza del Video, è un altro libro della stessa casa editrice americana citata qui sopra. Mi è stato detto che vi si spiega, tra l'altro, come impiegare il video come mezzo di autoespressione. Penso che il video stia veramente diventando uno strumento di manifestazione artistica, come la tavolozza, la penna, il pianoforte. Così intendo io l'autoespressione, cioè il manifestare l'interiorità con messaggi estetici. Così il video entra nella dimensione eterna dell'umanità e nel suo travaglio incessante che è quello della conoscenza. Vorrei aggiungere che a lato della conoscenza dovremmo avere presente senza posa il problema della comprensione. Tutto sappiamo fare, ma molto spesso dimentichiamo che senza la comprensione reciproca le nostre opere perdono il vantaggio che da esse attendiamo. Che sia il video il mezzo scientifico capace di fortificare il sentimento dell'amicizia? Che il video sia una specie di taumaturgo del nostro secolo?

LINOTIPIA ELETTRONICA

Tutti gli enigmisti conoscono la cosiddetta "Linotipia." Si tratta di un gioco similare alle comuni "parole crociate," ma più difficile, perché non è possibile ricostruire i termini orizzontali che non si conoscono riempendo le caselle verticali, o viceversa. Vi sono molteplici "incroci," ma le parole-chiave è necessario scoprirle. Altrimenti, non è possibile completare la tavola. Noi abbiamo pensato di trasferire questo quiz in elettronica, per il divertimento dei lettori, ovvero abbiamo realizzato una Linotipia impiegando unicamente sigle, termini e voci attinenti alla nostra scienza. Non solo, ma per il "maggior divertimento" dei più abili solutori, con il gioco, offriamo lauti premi messi a disposizione da una nota ditta del settore. Lo "schema" della nostra Linotipia appare nella figura, ed ecco le relative definizioni:

ORIZZONTALI

- 1: Earth-Moon-Earth Communications.
- 4: Gas inerte che riempie certi tubi elettronici. Produce una ionizzazione rossa caratteristica. Numero atomico 10.
- 7: Spiacevole incontro, per le dita del riparatore TV!
- 8: Dieci alla sesta.
- 9: Si trasmette di qui.
- 11: Diodo stabilizzatore.
- 12: Caricato positivamente, attira gli elettroni.
- 13: Quando l'indice lo fa, si è in risonanza.
- 15: Zoccolo di vecchi tubi elettronici.
- 17: Rumore fastidioso (inglese).
- 20: Quaderno di stazione, o termine matematico.

VERTICALI

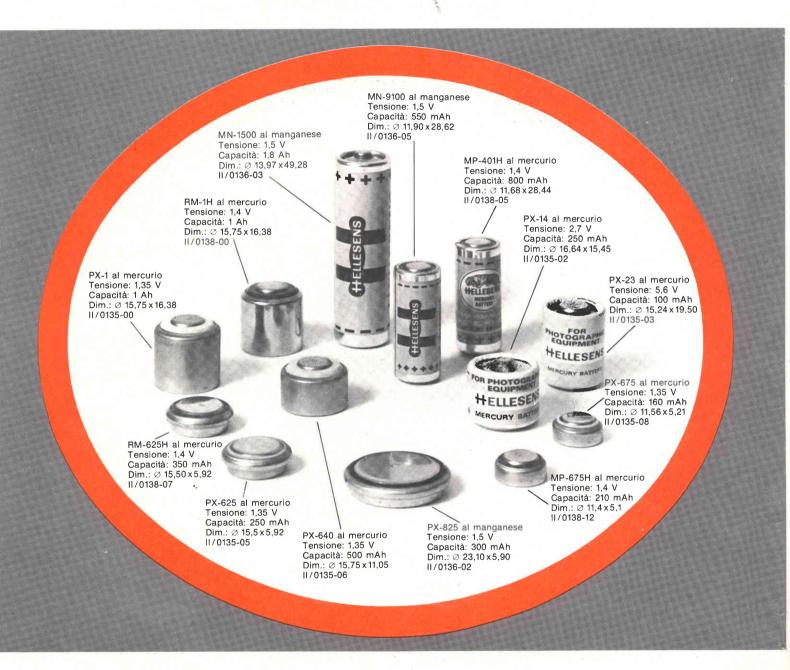
- 2: Satellite, spesso impiegato per misurazioni Laser a riflessione. Dista in media dalla Terra, circa 1 minuto-secondo-luce (inglese).
- 3: Nota musicale che può avere un valore di 36,7 Hz, oppure 73,4 Hz.
- 5: Ingegneria elettronica (abbreviazione inglese).
- 6: Ne sono pieni... i resistori!
- 10: Un ciclo al secondo (abbreviazione).
- 12: L'ha inventata Marconi.
- 13: Semiconduttore a due elettrodi che utilizza la proprietà di rettificare di una giunzione, formata da un materiale P e da uno N, selenio, silicio, germanio, gallio, antimonio.
- 14: Abbreviazione corrente per potenziometro.
- 16: Le bobine, a Londra, le chiamano così.
- 18: Biagi lo irradiò dalla "Tenda rossa.
- 19: Encefalogramma (abbreviato).

I PREMI

Lo sponsor di questo mese è la G.E.D. Elettronica, di Ostia-Lido (Roma), viale Ammiraglio Del Buono 69. Una Azienda leader nel campo degli antifurti e degli apparati anticrimine, che offre consulenza gratuita a chiunque abbia intenzione di installare un sistema di protezione.

Sono in palio:

- 1) *Per il primo classificato*: Una sirena antifurto modulata, stagna, che funziona anche sott'acqua, completa di amplificatore da 18 W, alimentazione a 12 V. Valore £ 38.150.
- 2) Per il secondo classificato: Una sirena antifurto modulata da 10 W, alimentazione a 12 V. Valore £ 28.000.
- 3) Per il terzo classificato: Una trappola antifurto originale U.S.A. a strappo del valore di £ 12.480.
- 4) Per il quarto classificato Un sistema di contatto antiincendio, originale U.S.A. regolato a 59 °C.
- 5) Per il quinto, il sesto ed il settimo: Una serratura elettrica munita di due chiavi originali.
- 6) Per l'ottavo classificato: Un contatto magnetico per porte o finestre, ad incasso, originale U.S.A.
- 7) Per il nono ed il decimo: Premio di consolazione, due avvisatori acustici a 6 V (minisirene), dal suono acutissimo, udibile a 300 metri di distanza.


PER CONCORRERE ALL'ASSEGNAZIONE DEI PREMI

- 1) Lo schema del quiz "Linotipìa" deve essere ritagliato dalla Rivista o ricopiato, e totalmente risolto.
- 2) La mancanza di una sola lettera, così come un solo errore escludono la soluzione dalla possibilità di essere premiata.
- 3) Poiché è esclusa la possibilità di recapitare direttamente il quiz risolto in Redazione, lo schema deve essere spedito per lettera NON raccomandata o espresso. In alternativa può essere incollato su di una cartolina postale.
- 4) La Redazione, a proprio insindacabile giudizio, invierà i premi disponibili ai lettori che per primi avranno inviato la soluzione esatta. Per evitare che siano facilitati i lettori più vicini a Milano, a danno di altri che risiedono in province lontane, per l'assegnazione dei premi, non verrà presa in considerazione la data di arrivo, ma quella del timbro postale di partenza.
- 5) I premi, come importanza, saranno assegnati ai vincenti in ordine di tempo, quindi chi più si affretta, più ha possibilità di ottenere il meglio che vi è a disposizione.

A tutti, i migliori auguri della Redazione! La soluzione sarà pubblicata sul prossimo numero.

Le forti piccole pile HELLESENS

Le pile Hellesens al mercurio e al manganese, sono un concentrato di energia.

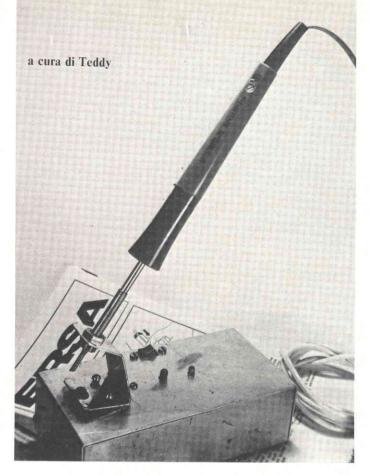
Hanno una durata superiore, perché costruite con estrema accuratezza usando materiali selezionati.

Durata superiore significa anche maggiore affidabilità: le pile Hellesens assicurano un'alimentazione con tensione costante fino all'ultimo.

la pila danese più venduta nel mondo.

era una volta la valvola e le radio erano a valvole. come i registratori, i televisori e financo i calcolatori ed i servocomandi elettronici non sfuggivano a questa "regina". Chi non ricorda i primi kit GBC con tubi a scarica di gas dev'essere oggi un adolescente, perché questo periodo di cui si parla non è poi tanto lontano nel tempo, appena una quindicina di anni fa. E oggi?

Mah, è tutto o quasi a transistori anzi i cosiddetti semiconduttori si sono fatti sempre più piccoli, potenti, resistenti, onnipresenti e realmente non è lontana l'epoca in cui tutti noi, come nei film di 007, avremo l'orologio-radio-sveglia-

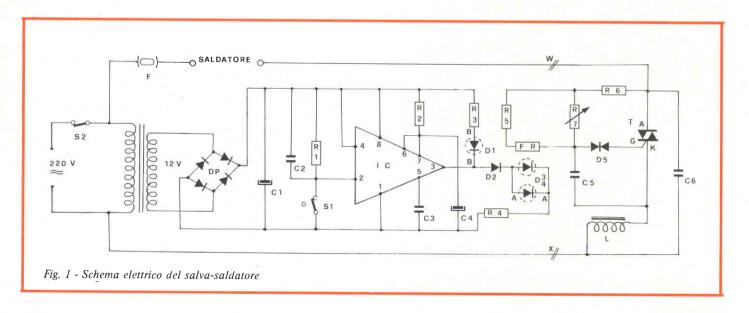

cucù da polso.

E ovvio che nel frattempo le esigenze di chi opera nel campo elettronico sono cambiate, non è più possibile usare. come una volta, un saldatore da 200 W per ogni tipo di lavoro; con una simile potenza è già un grosso problema saldare al proprio circuito stampato un transistore di potenza, figu-

rarsi un integrato!

Ecco che allora il mercato ha messo in circolazione una varietà di saldatori di bassa potenza dalle punte sempre più piccole e con temperature sempre più stabili nel punto di lavoro. Tuttavia detti attrezzi, tranne rare eccezioni, non sono istantanei, hanno bisogno di un periodo di riscaldamento prima di essere pronti all'uso, e quelli più rapidi e precisi sono anche piuttosto costosi.

Un lavoro di montaggio o di riparazione, come è noto, richiede un uso discontinuo del saldatore, e ciò implica che lo si debba tenere sempre sotto tensione, il che è decisamente negativo. Non per la corrente assorbita, pochi watt all'ora,



IL SALVA - SALDATORE

ma perché la durata dell'elemento riscaldante e della punta del saldatore sono proporzionali al tempo di utilizzazione, e perciò al tempo in cui si dà piena tensione all'attrezzo. Se in un'ora si usa un saldatore per dieci volte, magari per saldature di due minuti l'una (già troppo lunghe!) si lascia

che l'usura colpisca per la durata dei restanti 40 minuti. Per cercare di ovviare a ciò si può realizzare un apparato

il cui schema in figura 1 illustra trattarsi di un portasaldatore con limitatore automatico della potenza erogata, al saldatore, quando non sia utilizzato.

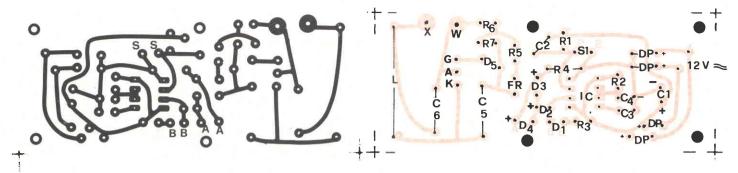
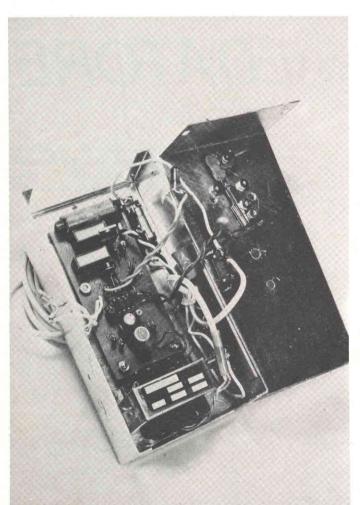


Fig. 2 - Basetta a circuito stampato visto dalla parte rame in grandezza naturale.


Fig. 3 - Disposizione dei componenti sulla basetta a circuito stampato; l'integrato è meglio se viene montato su un apposito zoccolo.

IL CIRCUITO

La tensione di rete, portata a 12 V dal trasformatore, alimenta tramite il ponte DP ed il condensatore livellatore l'integrato IC come si può notare in fig. 1.

Questo è un NE 555, le cui funzioni sono di temporizzatore o timer di alta precisione, indipendente dalla propria alimentazione che può variare da 5 a 15 V e dal proprio stadio finale in grado di pilotare, con le tensioni dette, carichi fino a 0,2 A.

L'integrato a riposo ha un'uscita a potenziale di massa, mentre se si applica un simile potenziale al piedino 2 si eccita l'integrato che porta l'out quasi al livello di tensione positiva, per un periodo di tempo prestabilito. Chiaramente se al termine del periodo fissato il pin 2 è ancora a massa,

si ripristina immediatamente il livello di "lavoro". Si sfruttano queste due fasi per pilotare a riposo un LED verde D1, ed in lavoro due LED rossi D3 e D4.

In questo apparato il tempo è fissato in 5÷6 secondi e lo start di esso è comandato dal deviatore S1.

Tornando ai LED notiamo che D3 illumina una fotoresistenza che è collegata nel circuito di pilotaggio di un triac il quale normalmente è portato, per mezzo di R6, R7, e C5, D5 a operare in modo tale che la tensione ai capi del saldatore sia piuttosto bassa; a riposo detta tensione deve permettere il riscaldamento dell'attrezzo ma senza che la punta sia tanto calda da sciogliere lo stagno.

Quando IC si eccita, il diodo D3 fa intervenire FR che pilota il triac lungo tutta la caratteristica del segnale alternato di rete, con conseguente piena erogazione di tensione e rapido riscaldamento finale del saldatore.

La induttanza L ed il condensatore C6 servono per una buona schermatura della rete dai possibili disturbi a RF generati dal triac.

Il fusibile in serie al saldatore va scelto in modo da essere di corrente decisamente inferiore a quella del triac che deve proteggere dai probabili cortocircuiti che fatalmente si possono verificare nel corso del proprio lavoro. Per rendere il circuito operante, bisogna però realizzare anche un supporto valido in cui S1 intervenga quando si vuole, dunque bisogna passare alla parte pratica.

PARTE PRATICA

La bobina L va pazientemente avvolta su un pezzo di ferrite tonda da 8 mm di diametro, del tipo per radio a transistori; con filo smaltato da 0,5 mm si avvolgono affiancate 40 spire che vanno bloccate con della vernice isolante.

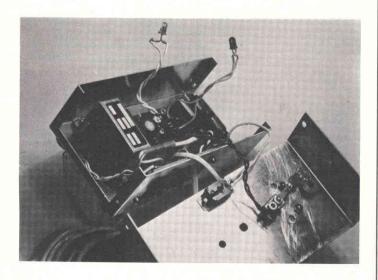
La maggior parte dei componenti va montata sul circuito stampato da cui si dipartiranno i fili di alimentazione, uscita, LED, S1. Vedere figg. 2 e 3.

Quindi si deve montare il tutto in un box di metallo, il prototipo usa un contenitore in alluminio TEKO, al quale si fisseranno trasformatore, portafusibile e presa per la spina del saldatore.

Bisogna curare che porta-fusibile e fusibile non tocchino alcuna parte di metallo ad evitare pericolose scosse.

S1, che è un ottimo Bulgin, sarà pilotato dal supporto del saldatore; questo porta-saldatore è ricavato da una striscia di alluminio o di ferro, opportunamente piegata e forata. In un foro più grosso va alloggiato un manicotto porta alberini, reperibile presso tutti i punti di vendita GBC, o ricavabile da un potenziometro rotto, che ha il compito specifico di reggere, dalla punta, l'utensile.

Alla base della striscia si fanno tre fori corrispondentemente ai vertici di un triangolo isoscele con base verso la piega, (vedi foto) e altrettanti fori coincidenti con i primi si fanno sul coperchio del contenitore. In ogni foro prende posto una vite, con una molla di metallo, che unisce i due pezzi forati.


La molla è ricavabile usando una di quelle che si trovano nelle penne a sfera che va tagliata in modo da ottenere tre molle da tre spire l'una. Come dalle foto è possibile notare, due di queste molle vanno messe fra testa della vite e supporto, dall'esterno, nei fori più vicini alla piegatura; l'altra va messa all'interno fra dado e coperchio. In tal modo il supporto dev'essere in grado di muoversi ed oscillare intorno alla piegatura di base con le molle che lo richiamano sul coperchio.

Evidentemente S1 va collegato alla vite con la molla interna, ed è azionato dal saldatore che posto sul supporto lo deve far piegare in avanti, come in fotografia, in virtù del peso proprio e del cavo di alimentazione. Il deviatore, molto sensibile, va bloccato con una vite, al coperchio attraverso i rivetti isolati dai contatti; non così però è per la flangia mobile, del deviatore, che è preferibile attaccare alla vite predestinata con della plastica. Per fare ciò, basta turarsi il naso, sciogliere della plastica normalmente rigida, con un attrezzo caldo, e stenderla con una pinza in modo da realizzare un solido collegamento meccanico con la vite.

Gli attacchi ai contatti vanno fatti in modo che S1 senza saldatore sulla base, sia come nello schema di fig. 1.

I due LED D1 e D4 come S2 vanno montati per mezzo di appositi fori sul coperchio del contenitore.

A montaggio ultimato vediamo come funziona il tutto: Acquistato un bel saldatore, ad esempio l'ERSA Tip 16 e poggiatolo sul salvasaldatore, di cui si è provveduto ad attaccare la spina alla rete, collegato il nostro saldatore alla sua apposita presa si azioni S2. Subito si deve illuminare il LED verde e l'attrezzo inizierà a riscaldarsi moderatamente. alla tensione prescelta in precedenza, tramite R7; non appena ci sarà bisogno di effettuare una saldatura basterà impugnare il Tip 16 e mentre il Led rosso sostituirà quello verde, alimentato a piena tensione l'attrezzo sarà pronto all'uso. Terminato il lavoro, riponendo il saldatore si possono avere sino a cinque secondi di ritardo prima della accensione di D1 e del funzionamento ridotto; ciò è stato voluto espressamente, per evitare che dovendo fare delle saldature molto vicine in ordine di tempo, la punta del saldatore non dovesse subire rapidi sbalzi di calore. Anzi, volendo allungare questo tempo di "inerzia", basta intervenire su C4 aumentandone il valore, ma con giudizio perché altrimenti si possono avere tempi di ritardo di ore!

ELENCO DEI COMPONENTI

DP : 4 diodi a ponte 1N4004
IC : circuito integrato NE555
D1 : diodo Led verde
D2 : diodo 1N4004
D3-D4 : diodi Led rossi FLV117

T : Triac TXAL 226 - 400 V6A

D5 : Diac S.T.2 R1 : resistore da

R5 : resistore da 100 Ω - 1/4 W R6 : resistore da 470 Ω - 1/4 W R7 : trimmer da 47 k Ω - 1/4 W

FR : fotoresistore

C1 : condensatore da 100 µF - 16 V

C2 : condensatore da 100 nF C3 : condensatore da 10 nF C4 : condensatore da 2 µF - 16 V

C5 : condensatore da 0,1 μ F - 400 V C6 : condensatore da 0,1 μ F - 400 V

T : trasformatore; primario 220 V - secondario 12 V es. tipo GBC HT/3571-02

S1 : deviatore sensitivo - : portafusibile

S2 : interruttore

HATOS

UT/6520

di Jani Cadovic

vantaggi della tecnica modulare, in cui è realizzato il televisore bianco e nero UT/6520, sono noti e pertanto non ci soffermeremo ad elencarli. Ricordiamo solo che rendono più rapidi gli interventi del personale di servizio, poiché sono raggruppate in pannelli separati e intercambiabili tutte le funzioni circuitali interdipendenti tra loro.

Sono stati impiegati quattro circuiti integrati, di cui due nel canale audio,

uno per l'elaborazione del segnale di sincronismo, ed uno per la base dei tempi di quadro.

Ora descriveremo brevemente le funzioni contenute in ciascuno dei sette moduli di cui si compone lo chassis di questo televisore.

Modulo sintonizzatore di canali

È costituito da un selettore di canali con accordo mediante diodi varicap, per la ricezione dei canali rispettivamente della banda VHF e UHF. Ha la possibilità di memorizzare sei programmi dalle bande VHF e UHF. In caso di sostituzione è possibile adattarvi qualsiasi tipo di sintonizzatore disponibile in commercio.

Modulo media frequenza video

Il segnale in uscita dal selettore di canali viene applicato all'ingresso dell'amplificatore della media frequenza video (Z), costituito da tre transistori che provvedono all'amplificazione del segnale di media frequenza video vero e proprio, più un diodo rivelatore seguito da un amplificatore che effettua la preamplificazione del segnale video rivelato. A prima vista, questo sistema tradizionale di amplificazione del segnale a media frequenza video mediante tre transistori discreti, sembrerebbe tecnologicamente superato. Attualmete, infatti, c'è

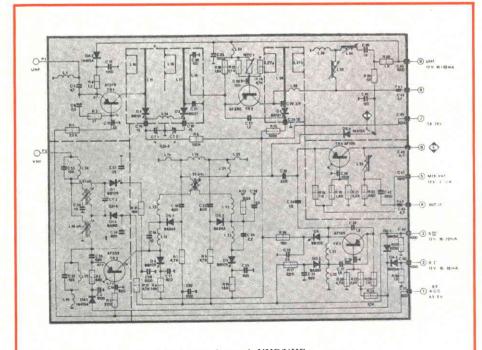


Fig. 1 - Schema elettrico del selettore di canali VHF/UHF.

TELEVISORE DA 20" TRASPORTABILE

CON SCHERMO A VISIONE PANORAMICA

Il televisore UT/6520 ha un selettore di canali integrato con sintonia a diodi varicap; può memorizzare 6 programmi diversi. Lo chassis è realizzato in tecnica modulare con circuiti automatici di stabilizzazione dei sincronismi e del guadagno che garantiscono un'immagine perfetta anche in zone a bassa intensità di segnale. Le regolazioni vengono effettuate mediante "sliders". È incorporata un'antenna a stilo per la ricezione dei programmi VHF e UHF. È presente anche una presa per un'antenna esterna da 75 Ω .

la tendenza ad impiegare, per l'amplificazione del segnale di media frequenza video, un circuito integrato nel quale oltre la funzione di amplificazione, sono contenute altre importanti funzioni circuitali quali la produzione del C.A.G. per la regolazione dell'amplificazione dei segnali di media frequenza video, come pure il C.A.G. ritardato per la regolazione dell'amplificazione della sezione a radio frequenza nel selettore di canali. È stato scelto il sistema di amplificazione mediante tre transistori discreti in quanto in questa maniera è possibile realizzare una curva di risposta di media frequenza con andamento piatto e fianchi molto ripidi, a tutto vantaggio della banda delle frequenze video trasmesse. Ciò non sarebbe possibile, se, venisse impiegato un circuito integrato. Oltre ai tre transistori che provvedono all'amplificazione del segnale di media frequenza video, sono presenti in questo modulo altri tre transistori, e precisamente, un BC207 che provvede alla preamplificazione del segnale video rivelato, e contemporaneamente alla separazione dei segnali di sincronismo; un BC 204 che provvede alla formazione della tensione per la regolazione del guadagno dell'amplificatore della media frequenza video o, in altre parole, per la produzione del C.A.G. di media frequenza; infine un BC 207 che fornisce la tensione C.A.G. per la regolazione ritardata dell'amplificazione del segnale video nel selettore di canali.

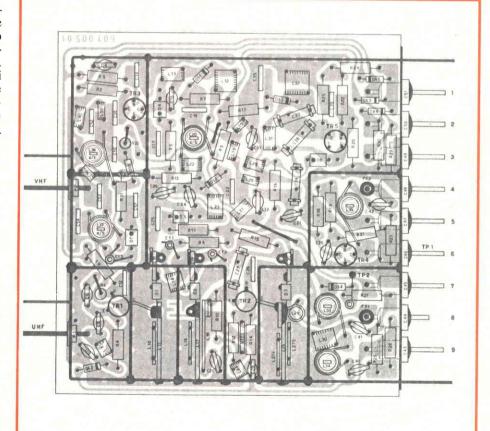


Fig. 2 - Selettore di canali VHF/UHF visto dalla parte dove si trovano i componenti, montati sul circuito stampato.

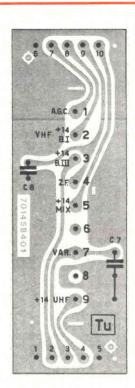


Fig. 3 - Circuito stampato per il montaggio del selettore di canali.

Il circuito stampato è racchiuso in un contenitore di alluminio che funziona da schermo. Nel caso di sostituzione

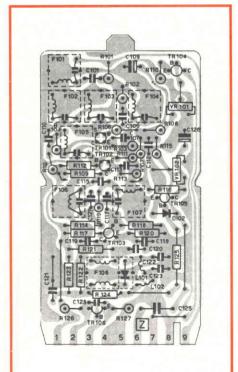


Fig. 4 - Modulo di media frequenza video (Z)

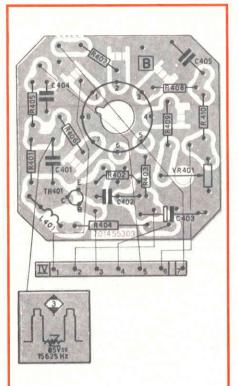


Fig. 5 - Zoccolo per l'alimentazione del cinescopio sul quale si trova anche il transistore finale video.

di questo modulo, occorrerà porre la massima attenzione affinché questo schermo aderisca molto bene ai contatti di massa in modo da evitare inneschi e scariche sull'immagine.

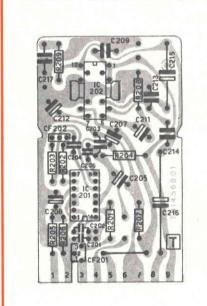


Fig. 6 - Modulo audio (T). Si notino i due circuiti integrati rispettivamente IC 202 e IC 201.

Modulo finale video (B)

È fissato direttamente sullo zoccolo del cinescopio, e contiene il transistore finale video BF 258, gli scaricatori per le tensioni applicate al cinescopio, ed infine il regolatore per la focalizzazione dell'immagine.

Modulo audio (T)

All'uscita del transistore preamplificatore video (BC 207) è presente anche il segnale intercarrier a 5,5 MHz che trasporta il segnale audio. Questo segnale viene applicato all'ingresso del modulo audio costituito essenzialmente da due circuiti integrati: uno per l'amplificazione e la rivelazione del segnale intercarrier a 5,5 MHz, e l'altro per amplificazione finale del segnale audio medesimo. La caratteristica di questo modulo audio è l'assenza di circuiti accordati a 5,5 MHz e di conseguenza, la non necessità di alcuna taratura in proposito. Infatti, i convenzionali circuiti accordati a 5,5 MHz sono stati sostituiti, in questo caso, da opportuni filtri ceramici risonanti alla frequenza intercarrier di 5,5 MHz. Nell'integrato SN 76660N è presente un particolare circuito di aggancio di fase che mantiene il sistema costantemente in frequenza.

La regolazione del volume è in corrente continua, e di conseguenza, non esiste il pericolo di riproduzione di ronzii dovuti alla lunghezza dei cavi anche schermati che normalmente portano il segnale di bassa frequenza al potenziometro per la regolazione del volume. Il circuito integrato TBA 800 è *di potenza* dato che ad esso si può collegare direttamente l'altoparlante, dal quale è possibile ricavare una potenza massima di 4 W (su 8 Ω) entro la banda di frequenza compresa tra 45 e 10.000 Hz.

Modulo separatore sincronismo e finale verticale (SV)

Anche questo modulo contiene due circuiti integrati: uno per la sezione della base dei tempi di quadro, e l'altro per la separazione degli impulsi di sincronismo rispettivamente verticale e orizzontale.

All'ingresso del TAA 621 (piedino 7) sono presenti gli impulsi di sincronismo verticali, elaborati dal circuito SN 76544N; all'uscita del piedino 1 è presente un segnale a dente di sega che serve per il pilotaggio del transistore finale di quadro funzionante in un circuito con base a massa. Nel circuito integrato SN 76544N sono contenute le seguenti funzioni circuitali: amplificazione del segnale di sincronismo e separazione del medesimo, oscillatore per la deflessione di riga e comparatore di fase per il controllo automatico della frequenza di riga.

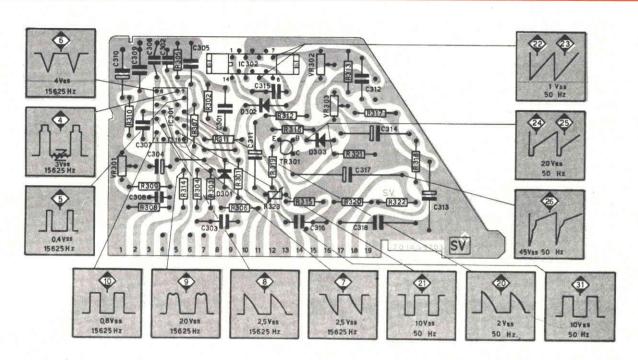


Fig. 7 - Modulo separatore sincronismi e finale verticale (FV). Sono indicate le forme d'onda che debbono essere presenti nei vari punti del circuito.

Modulo finale orizzontale (H)

Questo modulo comprende lo stadio finale orizzontale incluso il trasformatore di riga. L'impulso a frequenza di riga all'uscita dal modulo SV viene applicato alla base del transistore pilota BC 302, e di qui, mediante un trasformatore, alla base del transistore finale di riga BU 102. Al collettore del BU 102 è collegato il trasformatore di riga nel quale si trova: l'avvolgimento dell'alta tensione per l'alimentazione del cinescopio (EAT), ed inoltre altri avvolgimenti per la produzione delle tensioni ausiliarie necessarie al funzionamento dei vari circuiti del televisore.

Telaio base (TB)

Nel telaio-base si trova l'alimentatore stabilizzato tipo serie il quale fornisce due tensioni stabilizzate rispettivamente di 15,5 V per l'alimentazione dei moduli della media frequenza audio-video e per il sintonizzatore VHF/UHF, ed una tensione di 31 V che serve all'alimentazione di tutti gli stadi di potenza del televisore.

MESSA A PUNTO DEL TELEVISORE

Le regolazioni di messa a punto che qui sotto riportiamo sono *interne*, e di conseguenza, sono già state effettuate in sede di messa a punto del televisore *in* fabbrica. Esse, pertanto, raramente sono

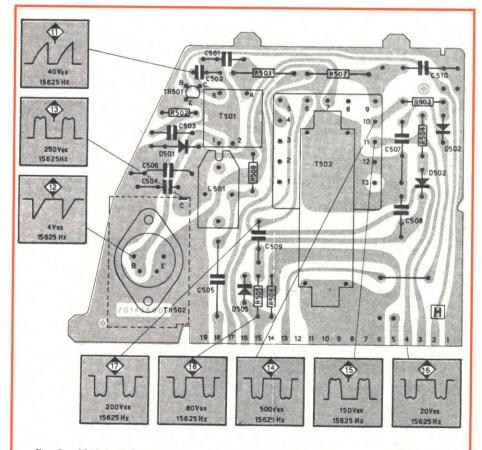
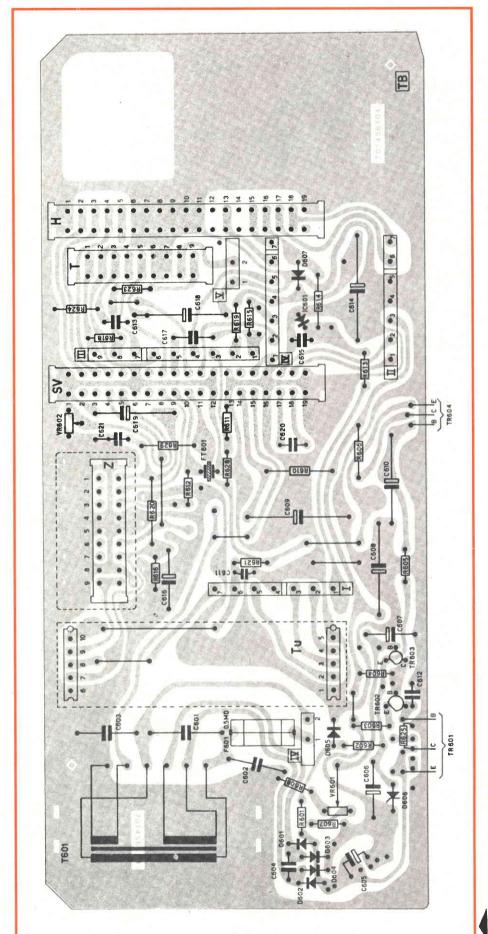



Fig. 8 - Modulo deflessione orizzontale (H). Su questo modulo si trova anche il trasformatore finale di riga T502 unitamente al transistore finale di riga TR502. Sono riportate le forme d'onda caratteristiche che debbono essere presenti nei punti del circuito indicati.

richieste e di regola occorre rifarle solo quando viene sostituito un componente o un modulo.

Regolazione della tensione di alimentazione.

Regolare VR 601 in modo da avere 31 V in continua tra TP 28 e massa. Questa regolazione va fatta quando sullo schermo del televisore è presente un'immagine con brillantezza a contrasto e dimensioni normali.

Focalizzazione dell'immagine.

Agire sulle varie regolazioni del televisore in modo da avere un'immagine normale per contrasto, brillantezza e dimensioni. A questo punto, regolare VR 401 portandolo da tutto antiorario a orario osservando contemporaneamente, e regolando detto potenziometro fino a quando non si riscontri la condizione di migliore focalizzazione dell'immagine medesima.

Centratura dell'immagine

Applicare al televisore il segnale del monoscopio; agire sulle varie regolazioni in modo da avere un'immagine con brillantezza e contrasto normali, indi agire sui due anelli magnetici che si trovano dalla parte posteriore del gioco di deflessione in modo che il centro del monoscopio venga a trovarsi al centro dello schermo e nello stesso tempo, però si abbia la riproduzione geometricamente perfetta del reticolo che si trova sul sottofondo del monoscopio.

Regola ione del C.A.G. della media fre uenza.

Applicare in antenna a un segnale forte: regolare contrasto e luminosità per una normale riproduzione; ruotare VR 102 iniziando da tutto orario ad antiorario: l'immagine sarà inizialmente sbiadita, poi comincerà ad aumentare di contrasto fino a raggiungere la saturazione; a questo punto si ritorna indietro con la regolazione di VR 102 fino a che si nota il ripristino del sincronismo verticale e orizzontale.

Fig 9 - Telaio base (TB). Su questo modulo si trova l'alimentatore stabilizzato che fornisce le tensioni rispettivamente di 15,5 V e di 31 V.

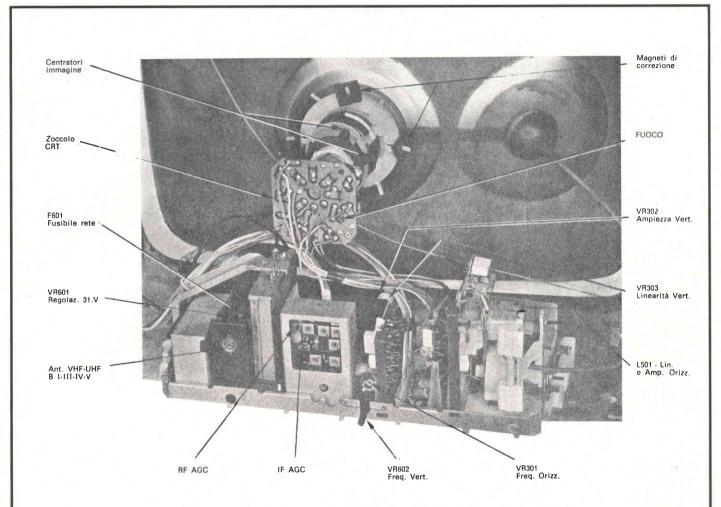


Fig. 10 - Televisore UT/6520 HATOS visto dalla parte posteriore con l'indicazione dei vari punti dove si trovano le regolazioni di messa a punto delle varie sezioni del televisore.

Regolazione del C.A.G. ritardato del selettore di canali.

Applicare in antenna un segnale di intensità tale da ottenere un'immagine poco nevicata (al limite della soglia del rumore). Regolare VR 101 da tutto antiorario a orario, per 8 Vcc tra TP 29 e massa. Aumentando il segnale d'antenna, la tensione sul TP 29 dovrà diminuire in proporzione all'intensità del segnale.

Ampiezza verticale

Per questa regolazione impiegare un cacciavite con asta isolata. Predisporre il televisore per la ricezione di una immagine normale; regolare VR 302 da antiorario a orario fino a che l'immagine ricopra e superi la superfice del cinescopio nella misura del 5% circa (sovrascansione).

Linearità verticale

Anche per questa regolazione si dovrà impiegare un cacciavite con asta isolata. Predisporre il televisore per la ricezione di un'immagine normale; regolare VR 303 per la migliore linearità in senso verticale.

Frequenza verticale

Regolare il televisore per la ricezione di una immagine normale; ruotare lentamente VR 602 da tutto orario ad antiorario fino a che l'immagine, scorrendo dal basso verso l'alto, non rimanga ferma; il sincronismo verticale è esatto in questa condizione.

Ampiezza e linearità orizzontali


Predisporre il televisore per la ricezione di una immagine normale. Regolare la bobina L 501 per la migliore linearità e ampiezza orizzontali, tenendo il 5% circa di sovrascansione in senso orizzontale.

Frequenza orizzontale

Predisporre il televisore per la ricezione di una immagine normale; mettere a massa il piedino 6 dell'integrato IC 301. L'immagine a questo punto apparirà priva di sincronismo orizzontale; regolare VR 301 in modo da avere un battimento zero tra l'oscillatore interno e il sincronismo trasmesso. Togliere da massa il piedino 6 del circuito integrato IC 301; a questo punto, l'immagine dovrà riapparire stabile.

Lo schema elettrico di questo televisore (UT/6520) è inserito al centro della rivista.

La radio militare da combattimento per voi giovani

costruita in modo da potervi seguire ovunque

Oltre ad essere in grado di assicurarvi la ricezione in qualsiasi punto vi troviate, è costruita in modo robusto e compatto. Il mobiletto in materiale antiurto vi permette di trattarla senza troppi riguardi durante i vostri «combattimenti»; la foggia ed il colore, la

"compattimenti"; la roggia ed il colore, la rendono perfettamente uguale alle radio usate dai militari.

Il minimo ingombro la rende comodossima da portare. È sempre pronta a trasmettervi notizie e musica in qualsiasi località vi troviate, in montagna o al mare in un bosco o in uno stadio. Ecco perché è la radio preferita dai giovani.

Caratteristiche tecniche

Circuito: supereterodina completamente transistorizzato Semiconduttori: 9 transistori, 4 diodi

Gamme d'onda: AM 535 ÷ 1605 MHz

FM 88 ÷ 108 MHz

Potenza max: 250 mW Impedenza: 8

Antenne: telescopica regolabile più una in ferrite

Presa per auricolari

Alimentazione: batteria da 9 V

Dimensioni: 115x75x40

K 10 ZD/0592-00

In vendita presso le sedi G.B.C.

BOUYER PER VENDERE MEGLIO

In ogni centro di vendita, piccolo o grande, una buona sonorizzazione è indispensabile per attirare, trattenere, vendere. BOUYER è la certezza di una sonorizzazione di qualità, con materiali affidabili, adatti alla soluzione di qualsiasi problema.

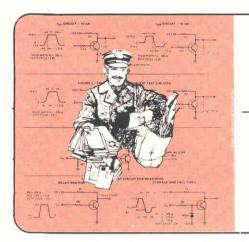
OGGI L'AMPLIFICAZIONE E' BOUYER

Presso tutte le sedi GBC, o direttamente alla GBC Italiana C.so Matteotti, 66 - Cinisello Balsamo (MI)

ALCUNE PRECISAZIONI SUL PING-PONG ELETTRONICO

L'articolo relativo al ping-pong elettronico, pubblicato sui numeri 1 e 2/1976 della nostra rivista, presenta alcune inesattezze che elenchiamo qui di seguito:

Schema elettrico N. 1/76 - pag. 17 - fig. 3


- I terminali di IC1 e IC2 indicati col numero 8 in realtà vanno letti come numero 5.
- Il collegamento a massa dell'emettitore di TR13 deve essere eliminato. Questo emettitore, infatti, oltre che con R52 va collegato a R13.
- Il terminale superiore di R40 deve essere collegato al + 5 V (P5) e non a massa.
- Il terminale 10 della porta H5 deve essere collegato all'anodo di D12 e non a quello di D13. Sempre all'anodo di D12 vanno collegati i terminali 2 di H6 e 1 di H7.

Basetta dei sincronismi N. 2/76 - pag. 119 - fig. 2/a

- Manca il tratto di pista che unisce R12 terminale 14 di IC2 con i terminali 14 di IC1 - IC10.
- Il terminale 6 di IC2 deve essere collegato al quart'ultimo «dente» del pettine e non al terz'ultimo.

VOLETE VENDERE O ACQUISTARE UN RICETRASMETTITORE USATO? SERVITEVI DI QUESTI MODULI!

□ ABBONATO □ NON ABBONATO	☐ ABBONATO ☐ NON ABBONATO
NOME	NOME
COGNOME	COGNOME
INDIRIZZO	INDIRIZZO
C.A.P CITTÀ	C.A.P CITTÀ
VENDO	ACQUISTO
RICETRANS MARCA	RICETRANS MARCA
MODELLO	MODELLO
POTENZA INPUT	POTENZA INPUT
NUMERO CANALI	NUMERO CANALI
NUMERO CANALI QUARZATI	NUMERO CANALI QUARZATI
TIPO DI MODULAZIONE	TIPO DI MODULAZIONE
ALIMENTAZIONE	ALIMENTAZIONE
CIFRA RICHIESTA LIRE	CIFRA OFFERTA LIRE
FIRMA	FIRMA
Ritagliare il modulo, compilario e spedirio a:Sperimentare CB. Via Pelizza da Volpedo, 1 - 20092 Claisello B. (MI). Il servizio è gratuito per gli abbonati. Agli altri L'ettori chiediamo il concorso spese di Lire 1.000.	Ritagliare il modulo, compilario e spedirio a:Sperimentare CB - Via Pelizza da Volpede, 1 - 20092 Cinisello B. (MI). Il servizio è gratuito per gli abbonati. Agli altri Lettori chiediamo il concorso spese di Lire 1.000.

In riferimento alla pregiata sua...

dialogo con i lettori di Gianni BRAZIOLI

Questa rubrica tratta la consulenza tecnica, la ricerca, i circuiti. I lettori che abbiano problemi, possono scrivere e chiedere aiuto agli specialisti. Se il loro quesito è di interesse generico, la risposta sarà pubblicata in queste pagine. Naturalmente, la scelta di ciò che è pubblicabile spetta insindacabilmente alla Redazione. Delle lettere pervenute vengono riportati solo i dati essenziali che chiariscono il quesito. Le domande avanzate dovranno essere accompagnate dall'importo di lire 3.000 (per gli abbonati L. 2.000) anche in francobolli a copertura delle spese postali o di ricerca, parte delle quali saranno tenute a disposizione del richiedente in caso non ci sia possibile dare una risposta soddisfacente. Sollecitazioni o motivazioni d'urgenza non possono essere prese in considerazione.

SEMPLICE MA OTTIMO RADIOMICROFONO PER BREVI DISTANZE

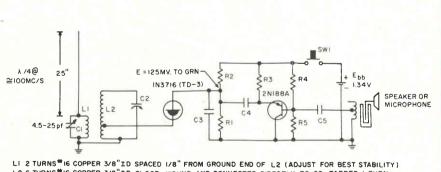
Dott. Roberto Marchese, Via Piave 37 -Voghera

Desidererei costruire un radiomicrofono adatto a trasmettere la voce di una conversazione ad un ricevitore collegato ad un piccolo registratore posto ad una distanza molto piccola (alcuni metri).

Lo scopo, praticamente, è quello di eliminare il filo di collegamento tra microfono e registratore.

I tipi pubblicati sulla Vostra ed altre Riviste, sono volti soprattutto a coprire distanze anche rilevanti e non risolvono il problema della ricezione, dato che io vorrei costruire un ricevitore a parte da collegare al mio registratore che ne è privo.

I "radiomicrofoni" sono così definiti, proprio perché si tratta di stazioni radiotrasmittenti che operano in telefonìa, ma dalla potenza ridotta o ridottissima. e dalle caratteristiche complessive tali da limitare il campo irradiato, e di conseguenza la "portata" dell'emissione.


Quindi, ci duole contraddirLa, ma nessun radiomicrofono, nostro o altrui copre distanze notevoli; se noi fossimo capaci di progettare un apparecchio miniaturizzato che permettesse collegamenti a grande distanza avremmo battuto in blocco C.I.A., K.G.B., G.R.U., Bureau de sécurité, MI5, Lien Lo pu & Co: ma ci pensa, che soddisfazione? Invece niente, malgrado le Sue incoraggianti asserzioni, oh scarognaccia!

Scherzi a parte, può darsi che qualche

radiomicrofono da Lei notato abbia una lunga portata, ma nell'ordine delle decine di metri. Se anche questa è eccessiva, pubblichiamo nella figura 1 il circuito di un apparecchio veramente "mini", che alla potenza ridotta accoppia una qualità di emissione tale da risultare HI-FI. Come si vede. in questo radiomicrofono-tipo l'oscillatore è un diodo Tunnel, e tutto il modulatore impiega un solo transistore PNP similare

I dati di tutte le parti sono in calce allo schema, ma non è spiegato che l'altoparlante che può servire come microfono deve

were una impedenza elevata (300 Ω o simili); quindi, tutto sommato conviene l'impiego di una capsula magnetica miniatura G.B.C.

- L2 6 TURNS*IG COPPER 3/8"ID CLOSE-WOUND AND CONNECTED DIRECTLY TO C2. TAPPED I TURN
- FROM GROUND. CI 4.5 - 25 $\mu\mu$ td CERAMIC TRIMMER C2 1.5 - 5 $\mu\mu$ td VARIABLE
- C3 800 HH td (VOLTAGE NOT IMPORTANT SELECT FOR SMALL SIZE)
- C4 50 ptd 6 VDC ELECTROLYTIC (VOLTAGE NOT IMPORTANT-SELECT FOR SMALL SIZE)
- C6 1 4 fd 35 VDC (VOLTAGE NOT IMPORTANT SELECT FOR SMALL SIZE)
- RI 181 1/2 W 5%
- R2 1500 1/2W 5%
- R3 470Ω I/4W
- R4 ΙΟΚΩ 1/4W
- R5 ΙΟΚΩ 1/4W
- Ebb MALLORY RM-12R MERCURY CELL 1.34VDC-3600 MAH Swi Normally open SPST "PUSH-TO-TALK" SWITCH

- SPKR 2"PM SPEAKER IN3716 (TD-3) 4.7MA AXIAL TUNNEL DIODE

Fig. 1 - Circuito elettrico di un radiomicrofono sub-miniatura, utilizzabile per brevi distanze di collegamento, dall'elevata qualità di modulazione.

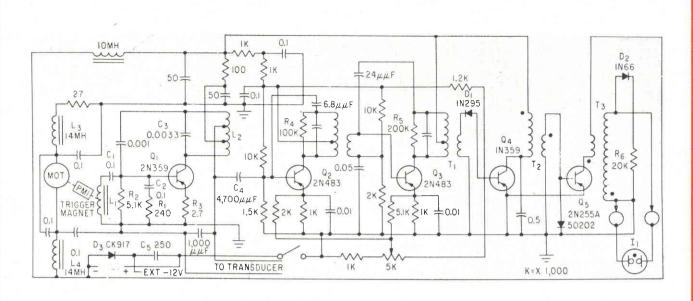


Fig. 2 - Circuito elettrico di un ecoscandaglio "semplificato".

Noi abbiamo provato anni addietro a costruire l'apparecchio, e ne è risultata una "scatola di cerini trasmittente" che funzionava meglio di quanto ci aspettavamo. Consigliamo quindi il circuito a ragion veduta.

Relativamente al ricevitore, perché mai dovrebbe costruirne uno appositamente, Dottore? Considerando che il "radiomic" funziona sulla banda FM, basta una normalissima supereterodina del commercio, per seguirne le emissioni, e l'uscita per l'auricolare di questa può essere collegata all'ingresso del registratore attraverso un trasformatorino da 8 Ω - 1000 Ω o similare, necessario per l'adattamento delle impedenze.

UNO DEI TANTI MONTAGGI "IMPOSSIBILI"

Sig. Giorgio Sindici, Via ^o Maggio 67/3, Monfalcone (GO)

Oltre ad essere un Hobbista dell'elettronica, ho anche la passione della pesca. Possiedo una piccola imbarcazione e vorrei dotarla di un ecoscandaglio elettronico, ma visti i prezzi piuttosto elevati di questi apparecchi che si trovano normalmente in commercio, mi sono chiesto se ci sarebbe la possibilità di potermelo costruire da solo. Per le mie necessità sarebbe sufficiente un ecoscandaglio che misuri una profondità massima di 40 metri

Ancora meglio per me sarebbe trovare il tutto in scatola di montaggio, se ne esistono sul mercato, sempreché la stessa non sia troppo costosa. Vogliate essere tanto gentili da inviarmi uno schema, in proposito, e l'eventuale indirizzo del venditore della scatola di montaggio. Se a parer vostro quanto sopra non fosse possibile sia per la difficoltà del progetto o anche per la difficoltà del reperimento dei componenti, siate comunque così cortesi da volermi rispondere ugualmente.

E noi Le rispondiamo, signor Sindici, anche (ma non solo) perché altri lettori ci hanno rivolto il medesimo quesito.

Purtroppo l'autocostruzione di un ecoscandaglio è assolutamente impossibile. Dopo aver sfogliato innumerevoli schemari, trattati, annate di Riviste, il circuito più semplice che siamo riusciti a trovare, è quello che riportiamo nella figura 2.

Come si vede, la semplicità è relativa. Comunque, anche potendo autoavvolgere tutti i trasformatori ultrasonici necessari (!!) e superare le difficoltà di cablaggio, resta insuperabile la costruzione del display rotante, con il motore, il magnete permanente, l'avvolgimento pick-up, il segnalatore luminoso ecc.

Questo è un lavoro che può essere affrontato solo essendo degli esperti di elettromeccanica, muniti di una officina bene attrezzata. Lo schema, è quindi pubblicato più che altro per soddisfare la curiosità Sua, e degli altri richiedenti.

Per quanto si riferisce alle scatole di montaggio, ovviamente ve ne sono diverse; quelle reperibili in Italia, pero, in genere hanno un prezzo esagerato, che talvolta è superiore a quello degli apparecchi montati, regolati e forniti di tutte le garanzie. All'estero vi è maggiore scelta. Per esempio, un Kit abbastanza conveniente, negli U.S.A. è disponibile presso la Ditta "Edmund

Scentific Corp" (Edscop Building, 300, Barrington N.J. 08007). Questa azienda dispone di un interessantissimo catalogo, che oltre allo scandaglio, elenca Laser, cercametalli, telescopi, visori, rivelatori di onde cerebrali, Kirlians's Kit ed altre apparecchiature recentissime. Tale catalogo, è inviato a chi lo richieda (scrivendo in inglese) ed allegando un rimborso che si aggira su \$ 2. Anche se far venire dagli U.S.A. qualunque prodotto è abbastanza difficile, posti i rigori doganali, le difficoltà valutarie, i tempi lunghi, nulla è impossibile per chi ha pazienza e magari un po' di fortuna.

Veda Lei signor Sindici: Kits a parte, l'idea di realizzare lo scandaglio con mezzi arrangisti, lo ripetiamo, non può che portare ad un inutile sciupio di tempo e danaro.

IL TAA611 FA QUEL CHE PUO'

Signor Pasquale Fuggetta, Castellaneta, Taranto

Vorrei sapere, se possibile, il modo di realizzare amplificatori di potenza, impiegando integrati come il TAA611 di cui ne posseggo una coppia. Tengo a precisare che la potenza di cui avrei bisogno, si aggira sui 4,5 - 5 W, ciò allo scopo di realizzare un amplificatore di modulazione per il TX "Fighter", di marzo 1975.

Tra i vari circuiti amplificatori di potenza che si possono realizzare con l'IC TAA611 (C), abbiamo scelto il più semplice, ed al tempo stesso quello che consente di ricavare la maggior potenza; lo pubblichiamo nella figura 3. Purtroppo il TAA611, pur essendo un ottimo dispositivo, non può erogare livelli di potenza dell'ordine dei 5 W, ma "solo" di 3,3 W di picco al massimo, e nello schema riportato. Per il ricavo di una maggior potenza è necessario cambiare IC. Per esempio, con il TBA810/AS è facile ottenere 7 W di picco con un circuito analogo.

STAZIONE TRASMITTENTE FM PROFESSIONALE

Sig. Andrea Milani, Via F. Marzolo 13, Padova

Vi prego di pubblicare lo schema di un trasmettitore FM, ma non con la solita portata di 20 - 30 metri, bensì con una portata buona di un Km, o superiore.

Vorrei poterlo studiare per rendermi conto di come possa essere un trasmet-

titore FM professionale.

Non so se quelli usati dalle stazioni che operano nelle frequenze tra gli 88÷ 108 MHz siano valvolari o a transistori.

Vorrei solo il trasmettitore, grazie!

Abbiamo pubblicato in precedenza, in questa stessa rubrica, un circuito del genere, transistorizzato, molto recente.

Forse Le è sfuggito, signor Milani; comunque, deve essere sfuggito anche ad altri, perché contemporaneamente alla Sua

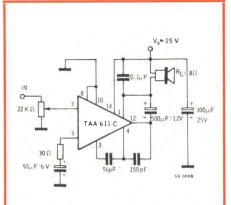


Fig. 3 - Circuito elettrico per la migliore utilizzazione dell'IC "TAA611/C". Come si vede, il numero di parti è ridotto al minimo, ma la potenza di picco audio ricavabile è di circa 3,3 W.

lettera ne sono giunte altre due.

Poiché, modestamente, i lettori di Sperimentare aumentano ogni numero, può darsi che i richiedenti, che non ci avevano mai scritto in precedenza (abbiamo controllato il nostro Ordinatissimo archivio) siano newcomer; ed allora, potremmo mai deluderli?

Certo no, ma per evitare inutili ripetizioni, stavolta pubblichiamo il circuito di un TX/FM professionale ibrido; a valvole

più transistori, erogante 25 W RF: figura 4.

I tubi sono utilizzati nella sezione "alta frequenza" e servono rispettivamente da oscillatore, triplicatore di frequenza, finale RF. I transistori invece servono negli stadi di preamplificazione microfonica, amplificatore-limitatore (in unione ai diodi CR2-CR3) ed amplificatore di modulazione che opera sul diodo a variazione di capacità CR1, vero modulatore dell'assieme.

Il progetto si deve al radioamatore americano W1QWJ ed è stato pubblicato dalla Rivista QST, in unione ad un finale duplicatore funzionante su 220 MHz, che ovviamente non interessa, per la gamma FM.

Si tratta di un apparecchio di buona scuola, che tra l'altro, forse è meno difficile da realizzare di uno tutto "solid state", ma certo è meno costoso di uno "solid state" di pari potenza, considerando che i tubi 6CL6 e 6BQ5 possono essere facilmente recuperati da vecchi chassis TV, mentre il 2E26 costa poche migliaia di lire presso le aziende che trattano materiali ex militari.

L'unico "fastidio" circuitale è forse l'alimentazione, che deve poter erogare 350 V con 200 mA, 150 V stabilizzati con 40 mA; inoltre 6,3 Vca; e 12 Vcc stabilizzati.

Il circuito oscillante L1-C4 risuonerà alla frequenza del cristallo (per esempio, 33,3 MHz). Il successivo L2-C7 sulla terza armonica (per esempio 99,9 MHz), infine, il p-greco finale C9-L4-C10 sarà calcolato per circa 105 MHz.

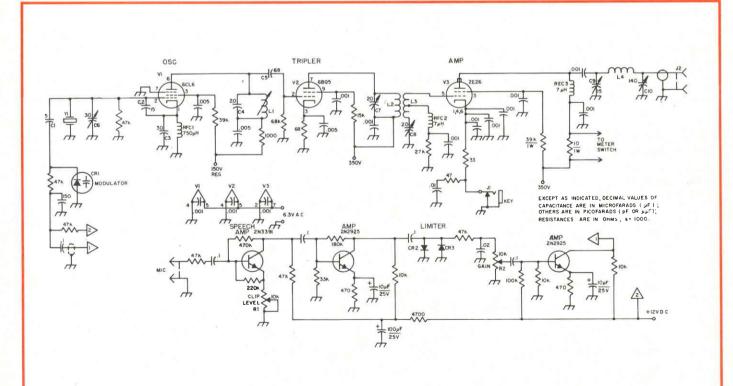
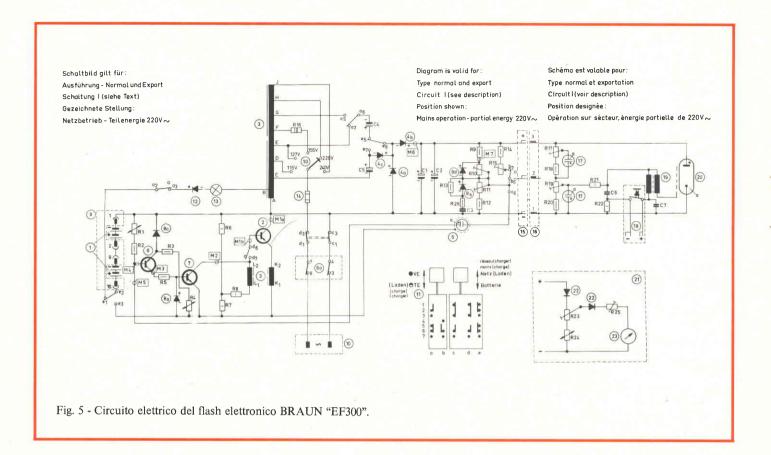



Fig. 4 - Trasmettitore FM funzionante sulla banda 88÷108 MHz.

È DISPERATO

Sig. Mario Paolini, Conceria, S. Croce sull'Arno (Pisa)

Mi rivolgo a voi perché ormai *dispero* di poter avere aiuto da chiunque altro. Sono proprio disperato!

Possiedo un Flash elettronico di marca Braun, con batterie incorporate, modello EF300 (FL 300). Non si tratta di un tipo modernissimo, poiché impiega ancora transistori al Germanio, ma è ottimo, o almeno era ottimo sin che funzionava.

Infatti si è guastato, ed a Livorno ove l'ho portato, me l'hanno forse più rotto di prima. Infatti scalda, ronza ed ha una autonomia ridottissima, dopo la "riparazione".

Credo che se disponessi del suo schema elettrico originale, potrei riguardarmelo da me, ma sembra che circuiti del genere siano dei gran segreti, perché nessuno li ha, e non si trovano nemmeno a pagamento. Ho battuto a tutte le porte, senza risultati. Ho scritto in Germania, a Milano; nessuno mi ha risposto.

Trattandosi di un apparecchio elettronico, non mi resta che sperare nella vostra buona volontà.

Stralciamo i passi salienti della Sua simpatica lettera, piuttosto lunga, ma gradita, condensando il resto. Come abbiamo avuto modo di ripetere più volte, NON si deve portare a riparare un apparecchio "dove capita capita", ma solo presso il servizio specializzato della Casa. In Italia, il servizio Braun esiste, quindi i laboratori più o meno "arrangistici" sono da scartare. Comunque, pubblichiamo lo schema elettrico del flash "EF300" nella figura 5, e se vuole effettuare qualche misura, proceda pure, con le cautele del caso. Con la pubblicazione, intendiamo anche accontentare quei lettori che ci hanno chiesto il circuito di un tipico flash come informazione tecnica.

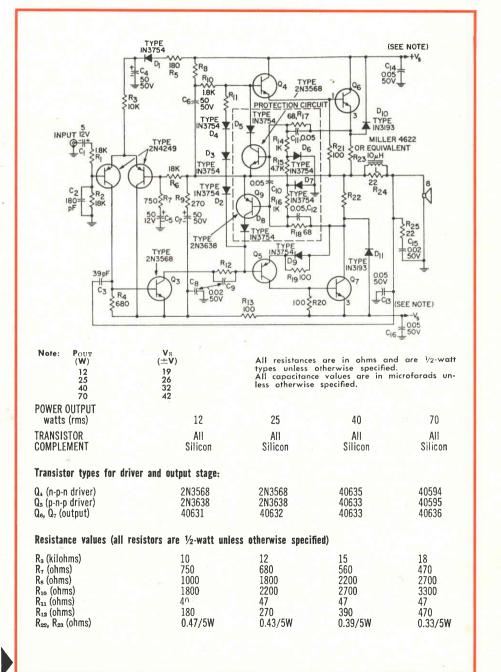
Cambiadischi automatico Cambiadischi automatico **LESA LESA** Tipo CPN 612 Tipo CPN 520 È dotato di comandi semplici, È dotato di comandi semplici, ma razionali, dispositivo per ma razionali, una manopola per discesa e sollevamento frenanti avviare e arrestare la rotazione e un'altra per la scelta della del braccio, trasmissione a velocità e del diametro del disco cinghia, regolazione peso Velocità 33 e 45 giri puntina, dispositivo Sede cartuccia: standard 'anti-skating" regolabile RA/0122-00 Velocità 33 e 45 giri Sede cartuccia: standard RA/0125-00

AMPLIFICATORE HI-FI DA 70 W QUASI PROFESSIONALE

Signor Pier Giovanni Bartoli, Vitinia

Sono un tecnico riparatore della "Grande famiglia con le ali" e posso dire che in quasi sette anni di lavoro, in fatto di apparati elettronici, ho potuto acquistare buona esperienza.

Nei giorni scorsi, volendomi togliere la soddisfazione di avere un vero complesso HI-Fi di classe ho visitato diversi commercianti del ramo, ma chiedendo le quotazioni dei vari Bozak, Scott, Yamaha, H&K (Harman Kardon) e simili, ho udito certe "stangate" di prezzi da far venire la tremarella. Costano come automobili!


Ora, dato che ho, come dico, molta pratica e pazienza, ho pensato di darmi da fare da solo, ed iniziare a costruirmi una coppia di amplificatori di potenza di qualità professionale. Un buon preampli l'ho già. Solo, poiché vorrei ottenere almeno 70 + 70 W R.M.S. (non di picco) con una distorsione massima dello 0,5% e banda passante 20 Hz - 50.000 Hz, non mi è facile trovare uno schema adatto, possibilmente protetto dai corti, che usi transistori reperibili in Italia. Potreste aiutarmi Voi, che a quanto vedo siete forti?

Eh, caro signor Bartoli, quando si mette l'occhio su di un complesso Yamaha o Scott, o del genere, non bisogna davvero pensare a spese. Chi chiede al venditore quanti chilometri fa con un litro una Silver Ghost della Roll Royce? Comunque, dato che Lei intende impegnarsi in un montaggio di classe, noi abbiamo ciò che serve: veda la figura 6. Il circuito presentato, è un progetto RCA davvero buono ed... "elastico" di amplificatore di potenza, che può erogare da 12 W a 70 W a seconda dei valori delle parti impiegate, del tipo dei transistori, e della tensione di alimentazione. Il responso dell'apparecchio, a 60 W, si estende da 20 Hz a 50.000 entro +/- 1 dB, e la distorsione THD rientra nelle Sue specifiche (fig. 7). Il rapporto segnale-rumore è di ben 80 dB, e la sensibilità è molto buona: 700 mV per 70 W di potenza. Come vede, la protezione dai cortocircuiti è compresa (zona tratteggiata nello schema, al centro).

Realizzando due di questi amplificatori, che non sono poi eccessivamente compli-

Fig. 6 - Un interessante circuito per appassionati di HI-FI: si tratta di un amplificatore di potenza, progettato dalla RCA, che può erogare sino a 70 W con una grandissima banda passante, ed una distorsione che approssima gli esemplari prettamente "da laboratorio" essendo contenuta nell'ordine dello 0,1% (!!).

Diffusore acustico 20 W Potenza nominale: 20 W Frequenza: 40–18.000 Hz Colore noce Dim.: 395X235X180 AD/0537-00 Diffusore acustico Peerles HI-FI Completo di crossover Potenza: 30 W Frequenza: 45–20.000 Hz Impedenza: 8 ohm Altoparlanti impiegati: 1 woofer - 1 tweeter norme Din 45573 Dim.: 240X390X248 AD/0543-00

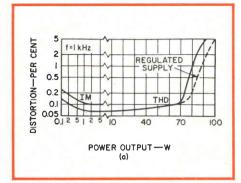
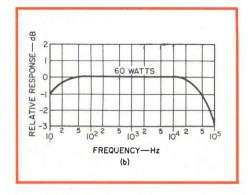



Fig. 7 - Queste curve, relative all'amplificatore di potenza presentato nella figura 6, mostrano l'eccellente qualità ricavabile dall'apparecchio; come si vede, la distorsione armonica totale è incredibilmente modesta. Non si deve però superare la potenza di 70 W, altrimenti si ha un sensibilissimo peggioramento nelle prestazioni.

cati, Lei può ottenere un gruppo finale di vera classe, che non avrà un nome celebre sul pannello, ma funzionerà come se lo avesse, e costerà certo un quinto dei corrispondenti commerciali come livello di prestazioni; forse meno. È da notare che dato gli "incroci" nello schema sono pochi, la progettazione del relativo circuito stampato non risulterà troppo difficile, e che i

transistori, ovviamente tutti RCA, possono essere acquistati anche presso le Sedi GBC. Così i diodi, che però hanno equivalenti comuni: IN3754 = BA104, IN4002; e lN3193 = BY127, IN4003.

Che dirLe di più? Ovviamente gli stadi finali devono essere ottimamente raffreddati; l'alimentatore da 42 + 42 V deve essere molto filtrato. L'impedenza "L" è un avvolgimento di filo da 1 mm smaltato che ricopre la "R24" da 22 Ω , e fa capo ai medesimi terminali.

Le precauzioni relative alla messa a punto ed al collaudo, sono quelle comuni a tutti gli amplificatori dalla potenza importante, e sembra proprio che di critico non vi sia nulla.

Buon lavoro, allora.

2 SOMMERKAMP.

AL "SUPERMARKET,,
DEI RICETRASMETTITORI
CB e OM

IN OFFERTA SPECIALE

Disponiamo delle marche più famose a prezzi eccezionali

A RICHIESTA DEPLIANTS E PREZZI

EL.RE. ELETTRONICA REGGIANA

Via S. Pellico, 2 - Tel. (0522) 82.46.50 - 42016 GUASTALLA (R.E.)

OFFERTE E RICHIESTE DI RICETRASMETTITORI CB

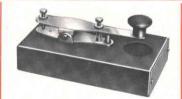
USATI

La rubrica è a disposizione dei lettori i quali possono trasmetterci le loro offerte o richieste con descrizioni complete. Il servizio è gratuito per gli abbonati. Agli altri lettori chiediamo il concorso spese di L. 1.000.

MARCA	MODELLO	ALIMENTA- ZIONE	TIPO DI EMISSIONE	POTENZA	NUMERO	TIPO	CIFRA RICHIESTA OD OFFERTA	SCRIVERE A:
VENDO								
INNO-HIT	CB 292	12 Vcc	AM	5 W	23 tutti quarzati	А	115.000	Maurizio Curcio V.le dei Mille, 85 50131 FIRENZE
LAFAYETTE	HB 23	12 Vcc	AM	5 W	23 tutti quarzati	А	70.000	Fernando Riz Via Datone, 4 38032 CANAZEI
MIDLAND	13-869	12 Vcc	АМ	5 W	23 tutti quarzati	А	75.000	Gianni Pernisa Via Isocrate, 22 20126 MILANO
MIDLAND	13-871	12÷14 Vcc	АМ	5 W	23 tutti quarzati	А	120.000	Geri Scaramella Via Cavalcavia, 2/A S. GIUSTO - 56100 PISA
FANON	T 1000	12 Vcc	АМ	5 W	23 tutti quarzati	Р	120.000	Leonardo Pisani Via Pisana, 679 BADIA A SETTIMO 50010 FIRENZE
SOMMERKAMP	TS-624 S	12 Vcc	АМ	10 W	24 di cui 23 quarzati	А	100.000	G. Battista Schiavon Via Vitt. Veneto, 26 21011 CASORATE SEMP.
TOKAI	MICRO MINI	12 Vcc	AM	5 W	23 tutti quarzati	Р	65.000	Graziano Cantoni Via Scala, 72 43100 PARMA
PONY	CB 78	12 Vcc	АМ	5 W	23 tutti quarzati	А	57.000	Luca Salsi Via F. Nullo, 11 43100 PARMA

P = portatile

A = auto


F = fisso

n.s. = non specificato/a

Alimentatore Dallas con box altoparlante da 5 W

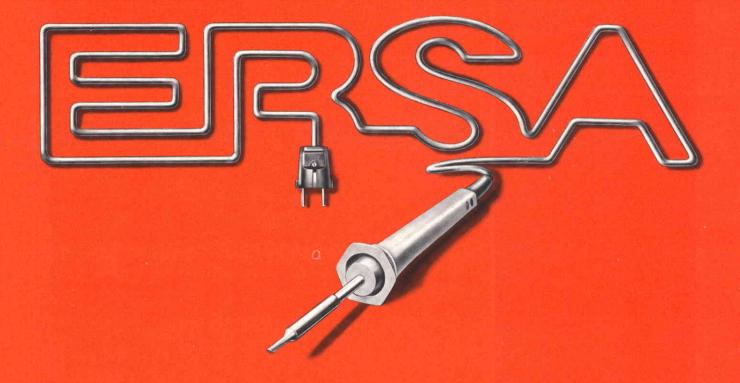
Autoprotetto contro il cortocircuito. Tensione d'uscita: 6÷14 Vc.c. Corrente max: 2,5 A Voltmetro indicatore della tensione d'uscita. Presa per cuffia Corredato di staffe per il fissaggio del ricetrasmettitore. NT/4660-00

Tasto telegrafico con oscillofono

Munito di regolazioni micrometriche che permettono di operare con massima precisione. Base in alluminio. Potenza d'uscita 0,2 W Alimentazione: a pile Dimensioni: 140x77x60 Zr/8100-01

Microtelefono Sommerkamp

Adatto per il ricetrasmettitore Sommerkamp Mod. TS-5632 (ZR/4523-12) NT/4630-00


Tasto telegrafico

Base in legno

Dimensioni:

138 x 70 x 30

ZR/8100-00

ROTORI STULLE

...e non ci pensi più

Rotore «Stolle» Mod. 2010

Corredato di comando automatico completamente transistorizzato.

Rotazione: Velocità di rotazione: 360° con fermo di fine corsa 1 giro in 50 sec.

Portata: Momento torcente: 25 kg. 0,8 kgm

Momento flettente: Ø palo fino a 52 mm

30 kgm

Accessori di fissaggio in acciaio inossidabile.

Alimentazione:

220 V c.a.

NT/4440-00

Rotore «Stolle» Mod. 2030

Corredato di comando automatico completamente transistorizzato.

Rotazione: Velocità di rotazione: 360° con fermo di fine corsa 1 giro in 60 sec.

Portata: Momento torcente: 25 kg 0,8 kgm 30 kgm

Momento flettente: Ø palo fino a 52 mm

Accessori di fissaggio in acciaio inossidabile. Alimentazione: 2

220 V c.a.

NT/4450-00

IN VENDITA PRESSO TUTTE LE SEDI

G.B.C.

a GENOVA: Via Chiaravagna, 10/R

Sinclair

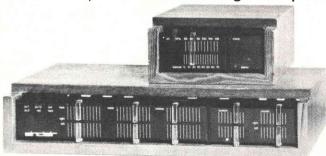
Project 80 una nuova linea modulare per un HI·FI di prestigio

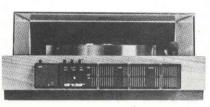

Caratteristiche di completa alta fedeltà facile costruzione modulare del complesso, estensibile ad un completo sistema quadrifonico

Sino ad ora se si desiderava migliorare la qualità del suono si era di fronte al problema di scartare l'esistente amplificatore e cominciare da zero. Ora non più.

> Project 80 si ingrandisce un poco alla

> > volta.


Si inizia con un amplificatore mono RMS 12 W non troppo caro ma di buona qualità, magari inserito nella base di un giradischi.


Il successivo passo logico sarebbe l'aggiunta dell'unità pre-amplificatrice, che permette una grande varietà di alimentazioni ed ha comandi per volume, bass e treble.

Questa aggiunta permette anche di migliorare il livello sonoro, poichè è dotata di ingresso per cartuccia magnetica a basso livello di tensione.

Il risultato può essere migliorato ulteriormente sostituendo agli Z 40 i moduli Z 60, che possono fornire una potenza di 25 Watt RMS: due Z 60 collegati a ponte,

sono in grado di erogare 30 W RMS per canale. Ci sarebbero ancora molte aggiunte per miglio-

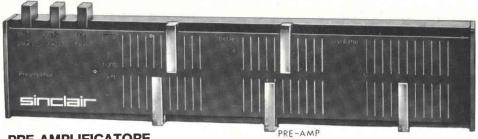
rare il vostro impianto: Un filtro rumble/ scratch, che migliorerà in modo incredibile l'ascolto di vecchi dischi consumati, aiutera anche ad eliminare il rumble causato talvolta da un giradischi dalle scarse prestazioni, e l'ascolto di un sintonizzatore FM, che riprodurrà superbamente le trasmissioni VHF e che, insieme ad un decoder, riprodurrà le trasmissioni in stereofonia.

In questo modo si otterrà un amplificatore

sintonizzatore ste-

reo di prima qua-

lità, paragonabile ai migliori complessi in vendita a prezzi molto superiori: non solo ma si avrà anche un complesso costruito con le proprie



Trasformazione da stereo in quadrifonico?

Niente di più facile

Basta aggiungere il decodificatore gudrifonico Project 80 (basato sul sistema CBS "SQ"), un alimentatore ed ecco un perfetto sistema audio.

FILTRO

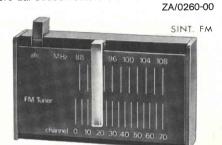
ATTIVO

PRE-AMPLIFICATORE **PROJECT 80**

Lo stereo 80, come gli altri project 80, viene fissato tramite viti. Tutti i componenti elettronici sono contenuti in un pannello frontale dello spessore di 2 cm. circa.

I fili di collegamento non sono visibili. Nello stereo 80 ogni canale ha comandi a cursore indipendenti di tono e volume, ottenendo così un ottimo adattamento acustico, conforme a

qualsiasi ambiente.


Ingressi per pick-up magnetici e ceramici, radio e registrazione.

Lo stadio d'ingresso è collegato a massa per assicurare la massima fedeltà rispetto a tutte le fonti di segnale.

Su tutti gli ingressi del codificatore, sono previsti larghi margini di sovraccarico.

disponibilità separata dalla sezione sintonizza-

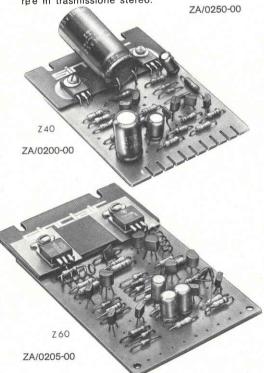
SINTONIZZATORE FM

tore dal decodificatore stereo.

Sintonizzatore eccezionale sotto ogni aspetto - dimensione compatta - collegamenti elettrici originali - prestazione sicura - tutto ciò in una moderna custodia di 86 x 50 x 20 mm. Per fornire questa prestazione drift-free si accoppia un forte controllo automatico di frequenze ad una doppia sintonia elettronica, seguita dalla sezione della frequenza intermedia con filtro ceramico a 4 poli per una extra

Una maggiore adattabilità si ottiene con la

FILTRO ATTIVO


selettività.

Questa efficientissima unità, è destinata a funzionare in unione a qualsiasi complesso Hi-Fi, ove sia richiesta la soppressione, o perlomeno la riduzione, di fruscii o rumori di fondo.

DECODIFICATORE STEREO PROJECT 80

Separando il decodificatore Project 80 dal sintonizzatore FM si ottiene una scelta di sistemi più ampia, come pure un risparmio, nei casi dove la ricezione stereo non è richiesta. Questa unità fornisce una sensibilità di 30 dB per canale con un'uscita di 150 mV per canale. Il diodo all'arseniuro di gallio emmette automaticamente una luce quando il sintonizzatoreè in trasmissione stereo.

in vendita presso le sedi G. B. C.

AMPLIFICATORI DI POTENZA Z 40 e Z 60

Gli amplificatori di potenza Z 40 e Z 60 vengono normalmente utilizzati con il Project 80, oppure possono essere impiegati in impianti più vasti

Negli Z 40 e Z 60, è assicurata la protezione contro i corto circuiti, riducendo così il pericolo di bruciatura derivante da un'inesatta inser-

La bassissima distorsione, dello 0,03% tipica nello Z 60, da alla gamma del Project 80 la caratteristica di nitidezza de suono.

ALIMENTATORI

DECOD. QUADR

La Sinclair fornisce alcuni tipi di alimentatori, destinati ad alimentare gli amplificatori della linea Project 80; sono i tipi PZ 5, PZ 6, PZ 8 e devono essere scelti in base alla potenza e alle prestazioni richieste.

Per alimentare due amplificatori del tipo Z 60, è necessario l'alimentatore tipo PZ 8.

PZ 6

È un alimentatore stabilizzato da 35 V consigliato per alimentare l'amplificatore e il sintonizzatore.

ZA/0225-00

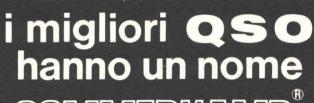
PZ8

È l'alimentatore stabilizzato migliore in senso assoluto della Sinclair: 50 Volt regolabili con limitatore di corrente d'esercizio per la protezione contro i danni derivanti da corto circuiti e sovraccarichi.

Questo principio non è mai stato applicato ai modelli già in commercio.

II PZ 8 richiede l'uso di un trasformatore di circa 2 ampère a 40-50 Volt c.a.

DECODIFICATORE QUADRIFONICO PROJECT 80


Questo modulo contiene un decodificatore quadrifonico SQ e preamplificatore con controlli di volume e tono per i due canali poste-

Si collega alla presa registratore dello stereo 80 o di altri amplificatori stereo.

È un semplice alimentatore non stabilizzato adatto per una coppia di Z 40. Ha una tensione d'uscita di 30 Volt.

SOMMERKAMP

32 canali tutti quarzati Potenza d'ingresso stadio finale: 5 W

Limitatore automatico di disturbi, squelch, segnale di chiamata Presa per auricolare, microfono, microtelefono, antenna esterna e alimentatore.

Alimentazione: Dimensioni: ZR/4532-12 12 Vc.c. 230x75x40

Ricetrasmettitore «Sommerkamp» Mod. TS-5030 P

24 canali equipaggiati di quarzi
Orologio digitale incorporato che permette di predisporre
l'accensione automatica
Microfono preamplificato, con possibilità di regolare il guadagno
Limitatore di disturbi, controllo volume e squelch
Indicatore S/RF

Presa per microfono, cuffia, antenna
28 transistori, 19 diodi, 1 SCR
Potenza ingresso stadio finale senza modulazione:
Potenza uscita RF senza modulazione:
Potenza uscita RF con modulazione 100%:
Potenza uscita audio max:
Alimentazione:
Dimensioni:
220

oixege ofieogge'llen strog

Versamento di L. 4.800

...anche adesso!

8 mesi di **Sperimentare** + la carta di Sconto G.B.C.

a sole

non è tutto... ...gli abbonati, nel corso dell'anno ricevono alcuni inserti speciali

Non rischiate di perdere anche un solo numero

ABBONATEVI!

Servizio dei Conti Correnti Postali	SERVIZIO DEI CONTI CORRENTI POSTALI	Servizio dei Conti Correnti Postali
Certificato di allibramento	Bollettino per un versamento di L. 4.800	Ricevuta di un versamento di_1L .* 4.800
ersamento di L. 4.800	Lire QUATTROMILAOTTOCENTO (in lettere)	Lire * Quattromilaottocento (in lettere)
eguito da sidente in	eseguito da residente in	eseguito da
a c/c N. 3/56420 intestato a:	sul c/c N. 3/56420 intestato a:	sul c/c N. 3/56420 intestato a:
JACOPO CASTELFRANCHI EDITORE J.C.E Via V. Monti, 15 - 20123 MILANO	JACOPO CASTELFRANCHI EDITORE J.C.E Via V. Monti, 15 - 20123 MILANO	JACOPO CASTELFRANCHI EDITORE J.C.E Via V. Monti, 15 - 20723 MILANO
	nell'Ufficio dei conti correnti di MILANO 19	Addi (1) 19
Addi (1) 19	Bollo lineare dell'Ufficio accettante	Bollo lineare dell'Ufficio accettante
Bollo lineare dell'Ufficio accettante	Cartellino Tassa di L. del bollettario	ino numerato Tassa di L.
Bollo a data N. del bollettario ch 9	Bollo a data	ia L'Ufficiale di Posta Bollo a data
	(1) La data deve essere quella del giorno in cui si effettua il versamento	(*) Sbarrare a penna gli spazi rimasti disponibili prima e dopo l'indicazione dell'importo.

residente in eseguito da

Per abbonamento Maggio/Dicembre 1976 a Sperimentare

COGNOME E NOME O RAGIONE SOCIALE	SIALE
INDIRIZZO	
CITTÀ	
CODICE POSTALE	

Parte riservata all'Uff. dei conti corr.

IL VERIFICATORE

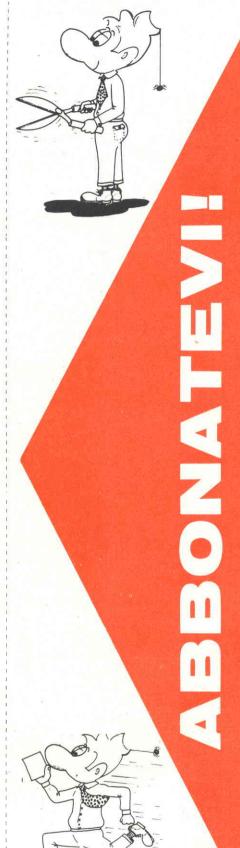
AVVERTENZE

Il versamento in conto corrente è il mezzo più semplice e più economico per effettuare rimesse di denaro a favore di chi abbia un C/C postale.

Per eseguire il versamento il versante deve compilare in tutte le sue parti, a macchina o a mano, purchè con innumero e la intestazione del conto ricevente qualora già chiostro, il presente bollettino (indicando con chiarezza il non vi siano impressi a stampa).

Per l'esatta indicazione del numero di C/C si consulti l'Elenco generale dei correntisti a disposizione del pubblico in ogni ufficio postale.

Non sono ammessi bollettini recanti cancellature, abrasioni o correzioni. A tergo dei certificati di allibramento, i versanti possono scrivere brevi comunicazioni all'indirizzo dei correntisti destinatari, cui i certificati anzidetti sono spediti a cura dell'ufficio conti correnti rispettivo. Autorizzazione Ufficio c/c Postali di Milano n. 21817 del 19-10-1965


postale in tutti i casi in cui tale sistema di pagamento è ammesso, ha va-La ricevuta del versamento in c/c lore liberatorio per la somma pagata, con effetto dalla data in cui il versamento è stato eseguito.

Potrete così usare per i Vostri pagamenti e per le Vostre riscos-Fatevi Correntisti Postali!

POSTAGIRO

sioni il

esente da qualsiasi tassa, evitando perdite di tempo agli sportelli degli uffici postali

musica Super HI-FI

Stereo Turntable System PS-1350

CARATTERISTICHE TECNICHE

 SONY®

RICHIEDETE I PRODOTTI SONY AI MIGLIORI RIVENDITORI

Cataloghi a FURMAN S.p.A.
Via Ferri, 6 - 20092 Cinisello B. (MI)

Sinclair

le calcolatrici costruite con la tradizionale serietà inglese


Dimensioni: 152 x 78 x 32

ZZ/9947-20

